693 resultados para Teorema de Poincar´e-Bendixson
Resumo:
Os "mercadores de letras" que agora publicamos corresponde ao texto da nossa dissertação de mestrado em História Contemporânea, defendida na faculdade de Letras de Universidade de Lisboa, em 1998. Por diversas razões e apesar de algumas propostas, sempre com a intenção de aligeirar o texto, não o publicamos na altura. Os projetos entretanto encetados e os novos rumos tomados pela nossa atividade de investigação, nomeadamente a opção pelo doutoramento em museologia, desviaram-nos decisivamente da nossa investigação sobre os editores e livreiros, sobre a divulgação do livro e da leitura. Foram anos de muita atividade. Em colaboração com o nosso amigo Ricardo Machaqueiro, desenvolvemos vários trabalhos sobre editoras e sobre os editores, nomeadamente sobre a Civilização do Porto, a Prelo a Teorema. Fizemos alguns trabalhos sobre Bibliotecas de Lisboa: A saudosa Biblioteca Popular, a biblioteca dos Operários da Sociedade Geral, A biblioteca do Arsenal do Alfeite, onde buscamos os vestígios da atividade de Bento Gonçalves, a Biblioteca da Voz do Operário. Trabalhamos várias livrarias, como a livraria leitura do Porto e a Livraria Ler, a livraria do Luís Alves, tertúlia do lisboeta bairro de Campo de Ourique, ao pé da estátua da Maria da Fonte. Alguns destes textos foram dados ao prelo em periódicos. A ver vamos se alguns serão reeditados.
Resumo:
Os ―mercadores de letras” que agora publicamos corresponde ao texto da nossa dissertação de mestrado em História Contemporânea, defendida na faculdade de Letras de Universidade de Lisboa, em 1998. Por diversas razões e apesar de algumas propostas, sempre com a intenção de aligeirar o texto, não o publicamos na altura. Os projetos entretanto encetados e os novos rumos tomados pela nossa atividade de investigação, nomeadamente a opção pelo doutoramento em museologia, desviaram-nos decisivamente da nossa investigação sobre os editores e livreiros, sobre a divulgação do livro e da leitura. Foram anos de muita atividade. Em colaboração com o nosso amigo Ricardo Machaqueiro, desenvolvemos vários trabalhos sobre editoras e sobre os editores, nomeadamente sobre a Civilização do Porto, a Prelo a Teorema. Fizemos alguns trabalhos sobre Bibliotecas de Lisboa: A saudosa Biblioteca Popular, a biblioteca dos Operários da Sociedade Geral, A biblioteca do Arsenal do Alfeite, onde buscamos os vestígios da atividade de Bento Gonçalves, a Biblioteca da Voz do Operário. Trabalhamos várias livrarias, como a livraria leitura do Porto e a Livraria Ler, a livraria do Luís Alves, tertúlia do lisboeta bairro de Campo de Ourique, ao pé da estátua da Maria da Fonte. Alguns destes textos foram dados ao prelo em periódicos. A ver vamos se alguns serão reeditados
Resumo:
An EPRSC ‘Partnerships for Public Engagement’ scheme 2010. FEC 122,545.56/UoR 10K everything and nothing is a performance and workshop which engages the public creatively with mathematical concepts: the Poincare conjecture, the shape of the universe, topology, and the nature of infinity are explored through an original, thought provoking piece of music theatre. Jorge Luis Borges' short story 'The Library of Babel' and the aviator Amelia Earhart’s attempt to circumnavigate the globe combine to communicate to audience key mathematical concepts of Poincare’s conjecture. The project builds on a 2008 EPSRC early development project (EP/G001650/1) and is led by an interdisciplinary team the19thstep consisting of composer Dorothy Ker, sculptor Kate Allen and mathematician Marcus du Sautoy. everything and nothing has been devised by Dorothy Ker and Kate Allen, is performed by percussionist Chris Brannick, mezzo soprano Lucy Stevens and sound designer Kelcey Swain. The UK tour targets arts-going audiences, from the Green Man Festival to the British Science Festival. Each performance is accompanied with a workshop led by Topologist Katie Steckles. Alongside the performances and workshops is a website, http://www.everythingandnothingproject.com/ The Public engagement evaluation and monitoring for the project are carried out by evaluator Bea Jefferson. The project is significant in its timely relation to contemporary mathematics and arts-science themes delivering an extensive programme of public engagement.
Resumo:
A new formal approach for representation of polarization states of coherent and partially coherent electromagnetic plane waves is presented. Its basis is a purely geometric construction for the normalised complex-analytic coherent wave as a generating line in the sphere of wave directions, and whose Stokes vector is determined by the intersection with the conjugate generating line. The Poincare sphere is now located in physical space, simply a coordination of the wave sphere, its axis aligned with the wave vector. Algebraically, the generators representing coherent states are represented by spinors, and this is made consistent with the spinor-tensor representation of electromagnetic theory by means of an explicit reference spinor we call the phase flag. As a faithful unified geometric representation, the new model provides improved formal tools for resolving many of the geometric difficulties and ambiguities that arise in the traditional formalism.
Resumo:
Nesse artigo, tem-se o interesse em avaliar diferentes estratégias de estimação de parâmetros para um modelo de regressão linear múltipla. Para a estimação dos parâmetros do modelo foram utilizados dados de um ensaio clínico em que o interesse foi verificar se o ensaio mecânico da propriedade de força máxima (EM-FM) está associada com a massa femoral, com o diâmetro femoral e com o grupo experimental de ratas ovariectomizadas da raça Rattus norvegicus albinus, variedade Wistar. Para a estimação dos parâmetros do modelo serão comparadas três metodologias: a metodologia clássica, baseada no método dos mínimos quadrados; a metodologia Bayesiana, baseada no teorema de Bayes; e o método Bootstrap, baseado em processos de reamostragem.
Resumo:
We study the analytic torsion of a cone over an orientable odd dimensional compact connected Riemannian manifold W. We prove that the logarithm of the analytic torsion of the cone decomposes as the sum of the logarithm of the root of the analytic torsion of the boundary of the cone, plus a topological term, plus a further term that is a rational linear combination of local Riemannian invariants of the boundary. We show that this last term coincides with the anomaly boundary term appearing in the Cheeger Muller theorem [3, 2] for a manifold with boundary, according to Bruning and Ma (2006) [5]. We also prove Poincare duality for the analytic torsion of a cone. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In this paper we show the existence of multiple solutions to a class of quasilinear elliptic equations when the continuous non-linearity has a positive zero and it satisfies a p-linear condition only at zero. In particular, our approach allows us to consider superlinear, critical and supercritical nonlinearities. (C) 2009 Elsevier Masson SAS. All rights reserved.
Resumo:
In this paper we present results for the systematic study of reversible-equivariant vector fields - namely, in the simultaneous presence of symmetries and reversing symmetries - by employing algebraic techniques from invariant theory for compact Lie groups. The Hilbert-Poincare series and their associated Molien formulae are introduced,and we prove the character formulae for the computation of dimensions of spaces of homogeneous anti-invariant polynomial functions and reversible-equivariant polynomial mappings. A symbolic algorithm is obtained for the computation of generators for the module of reversible-equivariant polynomial mappings over the ring of invariant polynomials. We show that this computation can be obtained directly from a well-known situation, namely from the generators of the ring of invariants and the module of the equivariants. (C) 2008 Elsevier B.V, All rights reserved.
Resumo:
We explore a method for constructing two-dimensional area-preserving, integrable maps associated with Hamiltonian systems, with a given set of fixed points and given invariant curves. The method is used to find an integrable Poincare map for the field lines in a large aspect ratio tokamak with a poloidal single-null divertor. The divertor field is a superposition of a magnetohydrodynamic equilibrium with an arbitrarily chosen safety factor profile, with a wire carrying an electric current to create an X-point. This integrable map is perturbed by an impulsive perturbation that describes non-axisymmetric magnetic resonances at the plasma edge. The non-integrable perturbed map is applied to study the structure of the open field lines in the scrape-off layer, reproducing the main transport features obtained by integrating numerically the magnetic field line equations, such as the connection lengths and magnetic footprints on the divertor plate.
Resumo:
Extending our previous work `Fields on the Poincare group and quantum description of orientable objects` (Gitman and Shelepin 2009 Eur. Phys. J. C 61 111-39), we consider here a classification of orientable relativistic quantum objects in 3 + 1 dimensions. In such a classification, one uses a maximal set of ten commuting operators (generators of left and right transformations) in the space of functions on the Poincare group. In addition to the usual six quantum numbers related to external symmetries (given by left generators), there appear additional quantum numbers related to internal symmetries (given by right generators). Spectra of internal and external symmetry operators are interrelated, which, however, does not contradict the Coleman-Mandula no-go theorem. We believe that the proposed approach can be useful for the description of elementary spinning particles considered as orientable objects. In particular, it gives a group-theoretical interpretation of some facts of the existing phenomenological classification of spinning particles.
Resumo:
We study the growth of Df `` (f(c)) when f is a Fibonacci critical covering map of the circle with negative Schwarzian derivative, degree d >= 2 and critical point c of order l > 1. As an application we prove that f exhibits exponential decay of geometry if and only if l <= 2, and in this case it has an absolutely continuous invariant probability measure, although not satisfying the so-called Collet-Eckmann condition. (C) 2009 Elsevier Masson SAS. All rights reserved.
Resumo:
Following the lines of Bott in (Commun Pure Appl Math 9:171-206, 1956), we study the Morse index of the iterates of a closed geodesic in stationary Lorentzian manifolds, or, more generally, of a closed Lorentzian geodesic that admits a timelike periodic Jacobi field. Given one such closed geodesic gamma, we prove the existence of a locally constant integer valued map Lambda(gamma) on the unit circle with the property that the Morse index of the iterated gamma(N) is equal, up to a correction term epsilon(gamma) is an element of {0,1}, to the sum of the values of Lambda(gamma) at the N-th roots of unity. The discontinuities of Lambda(gamma) occur at a finite number of points of the unit circle, that are special eigenvalues of the linearized Poincare map of gamma. We discuss some applications of the theory.
Resumo:
Recentemente, tem sido questionada a validade do teorema de Migdal nos fuieretos dopados supercondutores. Motivados por esse problema, realizamos nesta dissertação uma revisão das propriedades físicas destes novos e notáveis materiais: os fulerenos e outros representantes desta família de compostos orgânicos que possuem estrutura geométrica de gaiola fechada. Em primeiro lugar abordamos, ainda que de maneira sucinta, alguns fundamentos da teoria microscópica BCS (Bardeen, Cooper e Schrieffer, 1961) da supercondutividade, tais como o problema da instabilidade do líquido de Fermi, a formação de pares de Cooper, o método da transformação canônica para demonstrar o aparecimento da interação efetiva atrativa entre os elétrons do par, as equações de Gor'kov demonstrando o surgimento do gap supercondutor, e a expressão BCS da temperatura crítica no limite de acoplamento fraco. Após, revisamos o trabalho realizado por Grimaldi, Cappelluti e Pietronero (1995), sobre a supercondutividade não adiabática nos fuieretos dopados, no qual são feitas correções de vértice para a interação elétron-fônon, usando o método perturbativo. Naquele trabalho eles utilizam um modelo de fônons de Einstein com uma única freqüência para caracterizar a função espectral de Eliashberg, necessária para obter tais correções de vértice Nossa proposta neste trabalho é generalizar este modelo por um constituído de várias Lorentzianas truncadas, centradas nas freqüências dos principais modos de vibração da rede cristalina: os intermoleculares, os ópticos e os intramoleculares. Encontramos como resultado deste estudo que as correções de vértice, com contribuição multifonônica, introduzem modificações substancias como um aumento da temperatura crítica e variação no coeficiente isotópico, dando resultados mais próximos dos obtidos experimentalmente, em contraste daqueles obtidos na teoria de Migdal-Eliashberg, sem correções de vértice.