Decay of geometry for Fibonacci critical covering maps of the circle
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2009
|
Resumo |
We study the growth of Df `` (f(c)) when f is a Fibonacci critical covering map of the circle with negative Schwarzian derivative, degree d >= 2 and critical point c of order l > 1. As an application we prove that f exhibits exponential decay of geometry if and only if l <= 2, and in this case it has an absolutely continuous invariant probability measure, although not satisfying the so-called Collet-Eckmann condition. (C) 2009 Elsevier Masson SAS. All rights reserved. |
Identificador |
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, v.26, n.4, p.1533-1551, 2009 0294-1449 http://producao.usp.br/handle/BDPI/30560 10.1016/j.anihpc.2009.03.001 |
Idioma(s) |
eng |
Publicador |
GAUTHIER-VILLARS/EDITIONS ELSEVIER |
Relação |
Annales de l Institut Henri Poincare-analyse Non Lineaire |
Direitos |
restrictedAccess Copyright GAUTHIER-VILLARS/EDITIONS ELSEVIER |
Palavras-Chave | #Circle maps #Covering maps #Fibonacci combinatorics #Decay of geometry #Invariant measures #S-UNIMODAL MAPS #ONE-DIMENSIONAL MAPS #INVARIANT-MEASURES #QUADRATIC POLYNOMIALS #NEGATIVE SCHWARZIAN #INDUCED EXPANSION #CRITICAL-POINT #INTERVAL MAPS #ATTRACTORS #BOUNDS #Mathematics, Applied |
Tipo |
article original article publishedVersion |