520 resultados para TGT-sapphire
Resumo:
We have studied the temperature dependence of absorption edge of GaN thin films grown on sapphire substrate by metal-organic chemical vapor deposition using optical absorption spectroscopy. A shift in absorption edge of about 55 meV has been observed in temperature range 273-343 K. We have proposed a theoretical model to find the energy gap from absorption coefficient using alpha = alpha(max) + (alpha(min) - alpha(max))/[1 + exp 2(E - E-g + KT)/KT]. Temperature dependence of band gap has also been studied by finding an appropriate theoretical fit to our data using E-g(T) = E-g(273 K) - (8.8 x 10(-4)T(2))/(483 + T) + 0.088 (Varshni empirical formula) and E-g(T) = E-g(273 K)-0.231447/[exp(362/T)-1] + 0.082 relations. It has been found that data can be fitted accurately after adding a factor similar to 0.08 in above equations. Debye temperature (483 K) and Einstein temperature (362 K) in the respective equations are found mutually in good agreement.
Resumo:
Six-period 4 nm GaN/10 nm AlxGa1-xN superlattices with different Al mole fractions x were prepared on (0001) sapphire substrates by low-temperature metal-organic chemical vapor deposition. The linear electro-optic (Pockels) effect was studied by a polarization-maintaining fiber-optical Mach-Zehnder interferometer system with an incident light wavelength of 1.55 mu m. The measured electro-optic coefficients, gamma(13)=5.60 +/- 0.18 pm/V, gamma(33)=19.24 +/- 1.21 pm/V (for sample 1, x=0.3), and gamma(13)=3.09 +/- 0.48 pm/V, gamma(33)=8.94 +/- 0.36 pm/V (for sample 2, x=0.1), respectively, are about ten times larger than those of GaN bulk material. The enhancement effect in GaN/AlxGa1-xN superlattice can be attributed to the large built-in field at the interfaces, depending on the mole fraction of Al. (C) 2007 American Institute of Physics.
Resumo:
Thick GaN films with high quality have been grown on (0001) sapphire substrate in a home-made vertical HVPE reactor. Micron-size hexagonal pits with inverted pyramid shape appear on the film surface, which have six triangular {10-11} facets. These I {10-11} facets show strong luminescence emission and are characteristic of doped n-type materials. Broad red emission is suppressed in {10-11} facets and is only found at the flat region out of the pit, which is related with the decreasing defects on {10-11} facets. Low CL emission intensity is observed at the apex of V-shape pits due to the enhanced nonradiative recombination. Raman spectra show that there are higher carrier concentration and low strain in the pit in comparison to the flat region out of the pit. The strain relaxation may be the main mechanism of the V-shape pits formation on the GaN film surface. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Large-scale GaN free-standing substrate was obtained by hydride vapor phase epitaxy directly on sapphire with porous network interlayer. The bottom surface N-face and top surface Ga-face showed great difference in anti-etching and optical properties. The variation of optical and structure characteristics were also microscopically identified using spatially resolved cathodoluminescence and micro-Raman spectroscopy in cross-section of the GaN substrate. Three different regions were separated according to luminescent intensity along the film growth orientation. Some tapered inversion domains with high free carrier concentration of 5 x 10(19) cm(-3) protruded up to the surface forming the hexagonal pits. The dark region of upper layer showed good crystalline quality with narrow donor bound exciton peak and low free carrier concentration. Unlike the exponential dependence of the strain distribution, the free-standing GaN substrate revealed a gradual increase of the strain mainly within the near N-polar side region with a thickness of about 50 mu m, then almost kept constant to the top surface. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Nonpolar a-plane [(1120)] GaN samples have been grown on r-plane [(1102)] sapphire substrates by low-pressure metal-organic chemical-vapor deposition. The room-temperature first and second order Raman scattering spectra of nonpolar a-plane GaN have been measured in surface and edge backscattering geometries. All of the phonon modes that the selection rules allow have been observed in the first order Raman spectra. The frequencies and linewidths of the active modes have been analyzed. The second order phonon modes are composed of acoustic overtones, acoustic-optical and optical-optical combination bands, and optical overtones. The corresponding assignments of second order phonon modes have been made. (c) 2007 American Institute of Physics.
Resumo:
The V/III ratio in the initial growth stage of metalorganic chemical vapor deposition has an important influence on the quality of a GaN epilayer grown on a low-temperature AIN buffer layer and c-plane sapphire substrate. A weaker yellow luminescence, a narrower half-width of the X-ray diffraction peak, and a higher electron mobility result when a lower V/III ratio is taken. The intensity of in situ optical reflectivity measurements indicates that the film surface is rougher at the beginning of GaN growth, and a longer time is needed for the islands to coalesce and for a quasi-two dimensional mode growth to start. A comparison of front- and back-illuminated photoluminescence spectra confirms that many threading dislocations are bent during the initial stage, leading to a better structural quality of the GaN layer. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The A1 compositional distribution of A1GaN is investigated by cathodoluminescence (CL). Monochromatic CL images and CL spectra reveal a lateral A1 compositional inhomogeneity, which corresponds to surface hexagonal patterns. Cross-sectional CL images show a relatively uniform Al compositional distribution in the growth direction, indicating columnar growth mode of A1GaN films. In addition, a thin A1GaN layer with lower Al composition is grown on top of the buffer A1N layer near the bottom of the A1GaN epilayer because of the larger lateral mobility of Ga adatoms on the growth surface and their accumulation at the grain boundaries.
Resumo:
We report the growth of hexagonal ZnO nanorods and nanoflowers on GaN-based LED epiwafer using a solution deposition method. We also discuss the mechanisms of epitaxial nucleation and of the growth of ZnO nanorods and nanoflowers. A GaN-based LED epiwafer was first deposited on a sapphire substrate by MOCVD with no electrode being fabricated on it. Vertically aligned ZnO nanorods with an average height of similar to 2.4 mu m were then grown on the LED epiwafer, and nanoflowers were synthesized on the nanorods. The growth orientation of the nanorods was perpendicular to the surface, and the synthesized nanoflowers were composed of nanorods. The micro-Raman spectra of the ZnO nanorods and nanoflowers are similar and both exhibit the E-2 (high) mode and the second-order multiple-phonon mode. The photoluminescence spectrum of ZnO nanostructures exhibits ultraviolet emission centred at about 380 nm and a broad and enhanced green emission centred at about 526 nm. The green emission of the ZnO nanostructures combined with the emission of InGaN quantum wells provides a valuable method to improve the colour rendering index (CRI) of LEDs.
Resumo:
A new AlGaN/AlN/GaN high electron mobility transistor (HEMT) structure using a compositionally step-graded AlGaN barrier layer is grown on sapphire by metalorganic chemical vapour deposition (MOCVD). The structure demonstrates significant enhancement of two-dimensional electron gas (2DEG) mobility and smooth surface morphology compared with the conventional HEMT structure with high Al composition AlGaN barrier. The high 2DEG mobility of 1806 cm(2)/Vs at room temperature and low rms surface roughness of 0.220 nm for a scan area of 5 mu m x 5 mu m are attributed to the improvement of interfacial and crystal quality by employing the step-graded barrier to accommodate the large lattice mismatch stress. The 2DEG sheet density is independent of the measurement temperature, showing the excellent 2DEG confinement of the step-graded structure. A low average sheet resistance of 314.5 Omega/square, with a good resistance uniformity of 0.68%, is also obtained across the 50 mm epilayer wafer. HEMT devices are successfully fabricated using this material structure, which exhibits a maximum extrinsic transconductance of 218 mS/mm and a maximum drain current density of 800 mA/mm.
Resumo:
We have investigated the growth of AlGaN epilayers on a sapphire substrate by metalorganic chemical vapour deposition using various low-temperature ( LT) AlN buffer thicknesses. Combined scanning electron microscopy and cathodoluminescence investigations reveal the correlation between the surface morphology and optical properties of AlGaN films in a microscopic scale. It is found that the suitable thickness of the LT AlN buffer for high quality AlGaN growth is around 20 nm. The Al compositional inhomogeneity of the AlGaN epilayer is attributed to the low lateral mobility of Al adatoms on the growing surface.
Resumo:
The effects of Si and Mg doping on the crystalline quality and In distribution in the InGaN films were studied by atomic force microscope (AFM), triple crystal X-ray diffraction (TCXRD) and Rutherford backscattering spectrometry (RBS). The undoped, Si-doped and Mg-doped InGaN films were grown by metalorganic chemical vapor deposition (MOCVD) on (0 0 0 1) sapphire substrates. The electronic concentration in the Si-doped InGaN is about 2 x 10(19) cm(-3). It is found that the crystalline quality and In distribution in InGaN is slightly affected by the Si doping. In the Mg doped-case, the hole concentration is about 4 x 10(18) cm(-3) after annealing treatment. The surface morphology and crystalline quality of the Mg-doped InGaN are deteriorated significantly compared with the undoped InGaN. The growth rate of Mg-doped InGaN is higher than the undoped InGaN. Mg doping enhances the In incorporation in the InGaN alloy. The increase in In composition in the growth direction is more severe than the undoped InGaN. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
In undoped high-resistivity GaN epilayers grown by metalorganic chemical vapor deposition (MOCVD) on sapphire, deep levels are investigated by persistent photoconductivity (PPC) and optical quenching (OQ) of photoconductivity (PC) measurements. The PPC and OQ are studied by exciting the samples with two beams of radiation of various wavelengths and intensities. When the light wavelengths of 300 and 340 nm radiate the GaN epilayer, the photocurrent without any quenching effect is rapidly increased because the band gap transition only occurs. If the background light is 340 nm and the quenching light is 564 or 828 nm, the quenching of a small photocurrent generates but clearly. Two broad quenching bands that extend from 385 to 716 nm and from 723 to 1000 nm with a maximum at approximately 2.2 eV (566 nm) is observed. These quenching bands are attributed to hole trap level's existence in the GaN epilayer. We point out that the origin of the defects responsible for the optical quenching can be attributed to nitrogen antisite and/or gallium vacancy. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A high-Al-content AlGaN epilayer is grown on a low-temperature-deposited AlN buffer on (0001) sapphire by low pressure metalorganic chemical vapour deposition. The dependence of surface roughness, tilted mosaicity, and twisted mosaicity on the conditions of the AlGaN epilayer deposition is evaluated. An AlGaN epilayer with favourable surface morphology and crystal quality is deposited on a 20 nm low-temperature-deposited AlN buffer at a low V/III flow ratio of 783 and at a low reactor pressure of 100 Torr, and the adduct reaction between trimethylaluminium and NH3 is considered.
Resumo:
Temperature dependences of the polarized Raman scattering spectra in the backscattering configuration of the nonpolar a-plane (or [11 (2) over bar0]-oriented) GaN thin film are analyzed in the range from 100 to 570 K. The nonpolar a-plane GaN film is grown on an r-plane [or (1 (1) over bar 02)-oriented] sapphire substrate by metal organic chemical vapor deposition. The spectral features of the Raman shifts, intensities, and linewidths of the active phonons modes A(1)(TO), E-1(TO), and E-2(high) are significantly revealed, and corresponding temperature coefficients are well deduced by the empirical relationships. With increasing the measurement temperature the Raman frequencies are substantially redshifted and the linewidths gradually broaden. The compressive-strain-free temperature for the nonpolar a-plane GaN film is found to be at about 400 K. Our studies will lead to a better understanding of the fundamental physical characteristics of the nonpolar GaN film. (c) 2007 American Institute of Physics.
Resumo:
High-Al-content InxAlyGa1-x-yN (x = 1-10%, y = 34-45%) quaternary alloys were grown on sapphire by radio-frequency plasma-excited molecular beam epitaxy. Rutherford back-scattering spectrometry, high resolution x-ray diffraction and cathodoluminescence were used to characterize the InAlGaN alloys. The experimental results show that InAlGaN with an appropriate Al/In ratio (near 4.7, which is a lattice-match to the GaN under-layer) has better crystal and optical quality than the InAlGaN alloys whose Al/In ratios are far from 4.7. Some cracks and V-defects occur in high-Al/In-ratio InAlGaN alloys. In the CL image, the cracks and V-defect regions are the emission-enhanced regions.