936 resultados para Partial annealing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The optical absorption edge and ultraviolet (UV) emission energy of ZnO films deposited by direct current (DC) reactive magnetron sputtering at room temperature have been investigated. With the oxygen ratio increasing, the structure of films changes from zinc and zinc oxide coexisting phase to single-phase ZnO and finally to the highly (002) orientation. Both the grain size and the stress of ZnO film vary with the oxygen partial pressure. Upon increasing the oxygen partial pressure in the growing ambient, the visible emission in the room-temperature photoluminescence spectra was suppressed without sacrificing the band-edge emission intensity in the ultraviolet region. The peaks of photoluminescence spectra were located at 3.06---3.15 eV. From optical transmittance spectra of ZnO films, the optical band gap edge was observed to shift towards shorter wavelength with the increase of oxygen partial pressure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of post-deposited annealing on structure and optical properties of electron-beam evaporated Al2O3 single layers were investigated. The films were annealed in air for 1.5 h at different temperatures from 250 to 400 degrees C. The optical constants and cut-off wavelength were deduced. Microstructure of the samples was characterized by X-ray diffraction (XRD). Profile and surface roughness measurement instrument was used to determine the rms surface roughness. It was found that the cut-off wavelength shifted to short wavelength as the annealing temperature increased and the total optical loss decreased. The film structure remained amorphous even after annealing at 400 degrees C temperature and the samples annealed at higher temperature had the higher rms surface roughness. The decreasing total optical loss with annealing temperature was attributed to the reduction of absorption owing to oxidation of the film by annealing. Guidance to reduce the optical loss of excimer laser mirrors was given. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

HfO2 Elms are deposited on BK7 glass substrates by electron beam evaporation. The influences of annealing between 100 degrees C and 400 degrees C on residual stresses and structures of HfO2 films are studied. It is found that little differences of spectra, residual stresses and structures are obtained after annealing at lower temperatures. After annealing at higher temperatures, the spectra shift to short wavelength, the residual stress increases with the increasing annealing temperature. At the same time, the crystallite size increases and interplanar distance decreases. The variations of optical spectra and residual stress correspond to the evolutions of structures induced by annealing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

TiO2 thin films are prepared on fused silica with conventional electron beam evaporation deposition. After annealed at different temperatures for 4h, the spectra and XRD patterns of the TiO2 thin film are obtained. Weak absorption of coatings is measured by the surface thermal lensing technique, and laser-induced damage threshold (LIDT) is determined. It is found that with the increasing annealing temperature, the transmittance of TiO2 films decreases. Especially when coatings are annealed at high temperature over 1173K, the optical loss is very serious. Weak absorption detection indicates that the absorption of coatings decreases firstly and then increases, and the absorption and defects play major roles in the LIDT of TiO2 thin films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

TiO2 films are deposited by electron beam evaporation as a function of oxygen partial pressure. The packing density, refractive index, and extinction coefficient all decrease with the increase of pressure, which also induces the change of the film's microstructure, such as the increase of voids and H2O concentration in the film. The laser-induced damage threshold (LIDT) of the film increases monotonically with the rise of pressure in this experiment. The porous structure and low nonstoichiometric defects absorption contribute to the film's high LIDT. The films prepared at the lowest and the highest pressure show nonstoichiometric and surface-defects-induced damage features, respectively.(C) 2007 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanism of improving 1064 nm, 12 ns laser-induced damage threshold (LIDT) of TiO2/SiO2 high reflectors (HR) prepared by electronic beam evaporation from 5.1 to 13.1 J/cm(2) by thermal annealing is discussed. Through optical properties, structure and chemical composition analysis, it is found that the reduced atomic non-stoichiometric defects are the main reason of absorption decrease and LIDT rise after annealing. A remarkable increase of LIDT is found at 300 degrees C annealing. The refractive index and film inhomogeneity rise, physical thickness decrease, and film stress changes from compress stress to tensile stress due to the structure change during annealing. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ZrO2 thin films were prepared by electron beam evaporation at different oxygen partial pressures. The influences of oxygen partial pressure on structure and related properties of ZrO2 thin films were studied. Transmittance, thermal absorption, structure and residual stress of ZrO2 thin films were measured by spectrophotometer, surface thermal lensing technique (STL), X-ray diffraction and optical interferometer, respectively. The results showed that the structure and related properties varied progressively with the increase of oxygen partial pressure. The refractive indices and the packing densities of the thin films decreased when the oxygen partial pressure increased. The tetragonal phase fraction in the thin films decreased gradually as oxygen partial pressure increased. The residual stress of film deposited at base pressure was high compressive stress, the value decreased with the increase of oxygen partial pressure, and the residual stress became tensile with the further increase of oxygen pressure, which was corresponding to the evolution of packing densities and variation of interplanar distances. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background & Aims: Pro-inflammatory cytokines are important for liver regeneration after partial hepatectomy (PH). Expression of Fibroblast growth factor-inducible 14 (Fn14), the receptor for TNF-like weak inducer of apoptosis (TWEAK), is induced rapidly after PH and remains elevated throughout the period of peak hepatocyte replication. The role of Fn14 in post-PH liver regeneration is uncertain because Fn14 is expressed by liver progenitors and TWEAK-Fn14 interactions stimulate progenitor growth, but replication of mature hepatocytes is thought to drive liver regeneration after PH. Methods: To clarify the role of TWEAK-Fn14 after PH, we compared post-PH regenerative responses in wild type (WT) mice, Fn14 knockout (KO) mice, TWEAK KO mice, and WT mice treated with anti-TWEAK antibodies. Results: In WT mice, rare Fn14(+) cells localized with other progenitor markers in peri-portal areas before PH. PH rapidly increased proliferation of Fn14(+) cells; hepatocytic cells that expressed Fn14 and other progenitor markers, such as Lgr5, progressively accumulated from 12-8 h post-PH and then declined to baseline by 96 h. When TWEAK/Fn14 signaling was disrupted, progenitor accumulation, induction of pro-regenerative cytokines, hepatocyte and cholangiocyte proliferation, and over-all survival were inhibited, while post-PH liver damage and bilirubin levels were increased. TWEAK stimulated proliferation and increased Lgr5 expression in cultured liver progenitors, but had no effect on either parameter in cultured primary hepatocytes. Conclusions: TWEAK-FN14 signaling is necessary for the healthy adult liver to regenerate normally after acute partial hepatectomy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Al2O3/SiO2 films have been prepared by electron-beam evaporation as ultraviolet (UV) antireflection coatings on 4H-SiC substrates and annealed at different temperatures. The films were characterized by reflection spectra, ellipsometer system, atomic force microscopy (AFM), X-ray diffraction (XRD) and Xray photoelectron spectroscopy (XPS), respectively. As the annealing temperature increased, the minimum reflectance of the films moved to the shorter wavelength for the variation of refractive indices and the reduction of film thicknesses. The surface grains appeared to get larger in size and the root mean square (RMS) roughness of the annealed films increased with the annealing temperature but was less than that of the as-deposited. The Al2O3/SiO2 films maintained amorphous in microstructure with the increase of the temperature. Meanwhile, the transition and diffusion in film component were found in XPS measurement. These results provided the important references for Al2O3/SiO2 films annealed at reasonable temperatures and prepared as fine anti-reflection coatings on 4H-SiC-based UV optoelectronic devices. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evolution of microstructure and optical properties of TiO2 sculptured thin films under thermal annealing is reported. XRD, field emission SEM, UV-Vis-NIR spectra are employed to characterize the microstructural and optical properties. It is found that the optimum annealing temperature for linear birefringence is 500 degrees C. The maximum of transmission difference for linear birefringence is up to 18%, which is more than twice of that in as-deposited thin films. In addition, the sample annealed at 500 degrees C has a minimum of column angle about 12 degrees C. The competitive process between the microstructural and optical properties is discussed in detail. Post-annealing is a useful method to improve the linear birefringence in sculptured thin films for practical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zirconium dioxide (ZrO2) thin films were deposited on BK7 glass substrates by the electron beam evaporation method. A continuous wave CO2 laser was used to anneal the ZrO2 thin films to investigate whether beneficial changes could be produced. After annealing at different laser scanning speeds by CO2 laser, weak absorption of the coatings was measured by the surface thermal lensing (STL) technique, and then laser-induced damage threshold (LIDT) was also determined. It was found that the weak absorption decreased first, while the laser scanning speed is below some value, then increased. The LIDT of the ZrO2 coatings decreased greatly when the laser scanning speeds were below some value. A Nomarski microscope was employed to map the damage morphology, and it was found that the damage behavior was defect-initiated both for annealed and as-deposited samples. The influences of post-deposition CO2 laser annealing on the structural and mechanical properties of the films have also been investigated by X-ray diffraction and ZYGO interferometer. It was found that the microstructure of the ZrO2 films did not change. The residual stress in ZrO2 films showed a tendency from tensile to compressive after CO, laser annealing, and the variation quantity of the residual stress increased with decreasing laser scanning speed. The residual stress may be mitigated to some extent at proper treatment parameters. (c) 2007 Elsevier GmbH. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ta2O5 films were deposited by conventional electron beam evaporation method and then annealed in air at different temperature from 873 to 1273 K. It was found that the film structure changed from amorphous phase to hexagonal phase when annealed at 1073 K, then transformed to orthorhombic phase after annealed at 1273 K. The transmittance was improved after annealed at 873 K, and it decreased as the annealing temperature increased further. The total integrated scattering (TIS) tests and AFM results showed that both scattering and root mean square (RMS) roughness of films increased with the annealing temperature increasing. X-ray photoelectron spectroscopy (XPS) analysis showed that the film obtained better stoichiometry and the O/Ta ratio increased to 2.50 after annealing. It was found that the laser-induced damage threshold (LIDT) increased to the maximum when annealed at 873 K, while it decreased when the annealing temperature increased further. Detailed damaged models dominated by different parameters during annealing were discussed. (C) 2008 Elsevier B. V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ta2O5 films were deposited using the conventional electron beam evaporation method and then annealed at temperatures in the range 373-673 K. Chemical composition, scattering and absorption were examined by X-ray photoelectron spectroscopy (XPS), total integrated scattering (TIS) measurement and the surface thermal lensing (m) technique, respectively. The laser-induced damage threshold (LIDT) was assessed using the output from an Nd:YAG laser with a pulse length of 12 ns. The results showed that the improvement of the LIDT after annealing was due to the reduced substoichiometric and structural defects present in the film. The LIDT increased slightly below 573K and then increased significantly with increase in annealing temperature, which could be attributed to different dominant defects. Moreover, the root mean square (RMS) roughness and scattering had little effect on the LIDT, while the absorption and the LIDT were in accord with a general relation. (c) 2008 Elsevier Ltd. All rights reserved.