987 resultados para COLONIC-MUCOSA
Resumo:
The composition of polyphenols in ileal fluid samples obtained from an ileostomy subject after lingonberry intake was compared with lingonberry extracts obtained after simulated in vitro digestion (IVDL) and subsequent faecal fermentation (IVFL). HPLC-PDA-MS/MS analysis confirmed similar patterns of lingonberry (poly)phenolic metabolism after the in vivo and in vitro digestion, with reduced recovery of anthocyanins and a similar pattern of recovery for proanthocyanidins observed for both methods of digestion. On the other hand, the IVFL sample contained none of the original (poly)phenolic components but was enriched in simple aromatic components. Digested and fermented extracts exhibited significant (P < 0.05) anti-genotoxic (Comet assay), anti-mutagenic (Mutation Frequency assay), and anti-invasive (Matrigel Invasion assay) effects in human cell culture models of colorectal cancer at physiologically-relevant doses (0-50 μg/mL gallic acid equivalents). The ileal fluid induced significant anti-genotoxic activity (P < 0.05), but at a higher concentration (200 μg/mL gallic acid equivalents) than the IVDL. Despite extensive structural modification following digestion and fermentation, lingonberry extracts retained their bioactivity in vitro. This reinforces the need for studies to consider the impact of digestion when investigating bioactivity of dietary phytochemicals.
Resumo:
Coffee is a relatively rich source of chlorogenic acids (CGA), which, like other polyphenols are postulated to exert preventative effects against cardiovascular disease and type-2 diabetes. As a considerable proportion of ingested CGA reaches the large intestine, CGA may be capable of exerting beneficial effects in the large gut. Here we utilise a stirred, anaerobic, pH controlled, batch culture fermentation model of the distal region of the colon in order to investigate the impact of coffee and CGA on the growth of the human faecal microbiota. Incubation of the coffee with the human faecal microbiota led to the rapid metabolism of CGA (4h) and the production of dihydrocaffeic acid and dihydroferulic acid, whilst caffeine remained un-metabolised. The coffee with the highest levels of CGA (p<0.05, relative to the other coffees) induced a significant increase in Bifidobacterium spp. relative to the control at 10 hours post exposure (p<0.05). Similarly, an equivalent quantity of CGA (80.8mg; matched with that in high CGA coffee) induced a significant increase in Bifidobacterium spp. (p<0.05). CGA alone also induced a significant increase in the Clostridium coccoides-Eubacterium rectale group (p<0.05). This selective metabolism and subsequent amplification of specific bacterial populations could be beneficial to host health.
Resumo:
Resistance to the innate defences of the intestine is crucial for the survival and carriage of Staphylococcus aureus, a common coloniser of the human gut. Bile salts produced by the liver and secreted into the intestines are one such group of molecules with potent anti-microbial activity. The mechanisms by which S. aureus is able to resist such defences in order to colonize and survive in the human gut are unknown. Here we show that mnhF confers resistance to bile salts, which can be abrogated by efflux pump inhibitors. MnhF mediates efflux of radiolabelled cholic acid in both S. aureus and when heterologously expressed in Escherichia coli, rendering them resistant. Deletion of mnhF attenuated survival of S. aureus in an anaerobic three stage continuous culture model of the human colon (gut model), which represent different anatomical areas of the large intestine.
Effects of orange juice formulation on prebiotic functionality using an in vitro colonic model sytem
Resumo:
A three-stage continuous fermentative colonic model system was used to monitor in vitro the effect of different orange juice formulations on prebiotic activity. Three different juices with and without Bimuno, a GOS mixture containing galactooligosaccharides (B-GOS) were assessed in terms of their ability to induce a bifidogenic microbiota. The recipe development was based on incorporating 2.75g B-GOS into a 250 ml serving of juice (65°Brix of concentrate juice). Alongside the production of B-GOS juice, a control juice - orange juice without any additional Bimuno and a positive control juice, containing all the components of Bimuno (glucose, galactose and lactose) in the same relative proportions with the exception of B-GOS were developed. Ion Exchange Chromotography analysis was used to test the maintenance of bimuno components after the production process. Data showed that sterilisation had no significant effect on concentration of B-GOS and simple sugars. The three juice formulations were digested under conditions resembling the gastric and small intestinal environments. Main bacterial groups of the faecal microbiota were evaluated throughout the colonic model study using 16S rRNA-based fluorescence in situ hybridization (FISH). Potential effects of supplementation of the juices on microbial metabolism were studied measuring short chain fatty acids (SCFAs) using gas chromatography. Furthermore, B-GOS juices showed positive modulations of the microbiota composition and metabolic activity. In particular, numbers of faecal bifidobacteria and lactobacilli were significantly higher when B-GOS juice was fermented compared to controls. Furthermore, fermentation of B-GOS juice resulted in an increase in Roseburia subcluster and concomitantly increased butyrate production, which is of potential benefit to the host. In conclusion, this study has shown B-GOS within orange juice can have a beneficial effect on the fecal microbiota.
Resumo:
Glycopolymer hydrogels capable of mimicking mucosal tissue in mucoadhesion testing have been designed. Liquid formulations containing mucoadhesive polymers were found to be retained on these tissues to the same extent as ex vivo gastric mucosa, when using a dynamic method of assessing mucoadhesion.
Resumo:
Objective: Our aim was to evaluate the effects of a dietary regimen (suckling or early weaning) and feeding status (fed or fasted) on the distribution of transforming growth factor-beta 3 (TGF-beta 3) and TGF receptor-I (T beta RI) in the gastric epithelium of pups Methods: Wistar rats were used At 15 d, half of the pups were separated from dams and fed with hydrated powered chow On day 17, suckling and early weanling rats were subjected to fasting (17 h). Four different conditions were established. suckling fed and fasted and early weanling fed and fasted At 18 d stomachs were collected under anesthesia and were fixed in 4% formaldehyde for immunohistochemistry The number of immunostained epithelial cells per microscopic field was determined for TGF-beta 3 and T beta RI in longitudinal sections from the gastric mucosa Results: We found that during suckling, fasting reduced the number of immunolabeled cells per field of both molecules when compared with the fed group (P < 0.05), whereas in early weaning, food restriction increased TGF-beta 3 and T beta RI distributions (P < 0.05) We also observed that TGF-beta 3 and T beta RI were more concentrated in parietal cells in the upper gland in suckling pups, whereas after early weaning these were displaced to parietal and chief cells at the bottom of the gland Conclusion: Suckling and early weaning directly influence TGF-beta 3 and T beta RI distributions in the gastric epithelium in response to fasting, such that early weaning anticipates the effects observed in adult rats. Furthermore, the differential concentrations of TGF-beta 3 and T beta RI indicate that they might be important for cell proliferation events in growth control (C) 2010 Elsevier Inc. All rights reserved
Resumo:
The development of the gastric mucosa is controlled by hormones, growth factors and feeding behavior. Early weaning (EW), which means the abrupt interruption of suckling, increases proliferation and differentiation in the rat gastric epithelium. Transforming growth factor alpha(TGF alpha) is secreted in the stomach, binds to the epidermal growth factor receptor( EGFR) and may control cell proliferation, differentiation and migration. Here, we investigated the influence of suckling-weaning transition on the differentiation of mucous neck cells in the stomach and its association to the expression of TGF alpha and EGFR. Fifteen-day-old Wistar rats were divided into two groups: suckling( control), in which pups were kept with the dam, and early weaning( EW), in which rats were separated from their mother and fed with hydrated powdered chow. TGF alpha and EGFR levels were increased at 18 days in EW animals compared to control ones (p<0.05). Histochemical reactions with Periodic Acid-Schiff reagent+Alcian Blue or Bandeiraea simplicifolia II lectin were used to stain the mucous neck cells and showed an increase in this cell population throughout EW, which was more pronounced at 17 days when compared to suckling pups (p<0.05). These morphological results were confirmed by RT-PCR for mucin 6. The levels of mucin 6 mRNA were higher in EW animals from the 16th to the 18th day(1-3 days post-weaning) when compared to the respective control group. Inhibition of EGFR through AG1478 administration to EW animals prevented the expansion of mucous neck cell population induced by EW (p<0.05). Therefore, early weaning up regulated TGF alpha/EGFR expression and induced differentiation of mucous neck cells. Moreover, we showed that EGFR takes part in the maturation of this cell population. We conclude that regular suckling-weaning transition is crucial to guarantee the development of the gastric mucosa. (C) 2009 International Society of Differentiation. Published by Elsevier Ltd. All rights reserved.
Resumo:
Ogias D, de Andrade Sa ER, Kasai A, Moisan M, Alvares EP, Gama P. Fasting differentially regulates plasma corticosterone-binding globulin, glucocorticoid receptor, and cell cycle in the gastric mucosa of pups and adult rats. Am J Physiol Gastrointest Liver Physiol 298: G117-G125, 2010. First published October 15, 2009; doi:10.1152/ajpgi.00245.2009.-The nutritional status influences gastric growth, and interestingly, whereas cell proliferation is stimulated by fasting in suckling rats, it is inhibited in adult animals. Corticosterone takes part in the mechanisms that govern development, and its effects are regulated in particular by corticosterone-binding globulin (CBG) and glucocorticoid receptor (GR). To investigate whether corticosterone activity responds to fasting and how possible changes might control gastric epithelial cell cycle, we evaluated different parameters during the progression of fasting in 18- and 40-day-old rats. Food restriction induced higher corticosterone plasma concentration at both ages, but only in pups did CBG binding increase after short-and long-term treatments. Fasting also increased gastric GR at transcriptional and protein levels, but the effect was more pronounced in 40-day-old animals. Moreover, in pups, GR was observed in the cytoplasm, whereas, in adults, it accumulated in the nucleus after the onset of fasting. Heat shock protein (HSP) 70 and HSP 90 were differentially regulated and might contribute to the stability of GR and to the high cytoplasmic levels in pups and elevated shuttling in adult rats. As for gastric epithelial cell cycle, whereas cyclin D1 and p21 increased during fasting in pups, in adults, cyclin E slowly decreased, concomitant with higher p27. In summary, we demonstrated that corticosterone function is differentially regulated by fasting in 18-and 40-day-old rats, and such variation might attenuate any possible suppressive effects during postnatal development. We suggest that this mechanism could ultimately increase cell proliferation and allow regular gastric growth during adverse nutritional conditions.
Resumo:
Objectives: The aim of this study was to evaluate the genotoxic effects of X-rays on epithelial gingival cells during panoramic dental radiography using a differentiated protocol for the micronucleus test. Methods: 40 healthy individuals who underwent this procedure for diagnostic purposes on request from their dentists agreed to participate in this study. All of them answered a questionnaire before the examination. Epithelial gingival cells were obtained from the keratinized mucosa of the upper dental arcade by gentle scraping with a cervical brush immediately before exposure and 10 days later. Cytological preparations were stained according to the Feulgen-Rossenbeck reaction, counterstained with fast green 1% for 1 min and analysed under a light microscope. Micronuclei, nuclear projections (broken eggs) and degenerative nuclear alterations (pyknosis, karyolysis, karyorrhexis and condensed chromatin) were scored. Results: The frequency of micronuclei was significantly higher after exposure (P < 0.05), as were frequencies of nuclear alterations indicate of apoptosis (P < 0.001). Conclusions: These results indicate that X-ray radiation emitted during panoramic dental radiography induces a genotoxic effect on epithelial gingival cells that increases the frequency of chromosomal damage and nuclear alterations indicative of apoptosis.