993 resultados para difração de raios X
Resumo:
Recent years have seen a significant growth in surface modifications in titanium implants, resulting in shorter healing times in regions with low bone density. Among the different techniques, subtraction by chemical agents to increase oxidation has been applied for surface treatment of dental implants. However, this technique is generally unable to remove undesirable oxides, formed spontaneously during machining of titanium parts, raising costs due to additional decontamination stages. In order to solve this problem, the present study used plasma as an energy source to both remove these oxides and oxidize the titanium surface. In this respect, Ti disks were treated by hollow cathode discharge, using a variable DC power supply and vacuum system. Samples were previously submitted to a cleaning process using an atmosphere of Ar, H2 and a mixture of both, for 20 and 60 min. The most efficient cleaning condition was used for oxidation in a mixture of argon (60%) and oxygen (40%) until reaching a pressure of 2.2 mbar for 60 min at 500°C. Surfaces were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), atomic force microscopy (AFM), adhesion and cell proliferation. SEM showed less cell spreading and a larger number of projections orfilopodia in the treated samples compared to the control sample. AFM revealed surface defects in the treated samples, with varied geometry between peaks and valleys. Biological assays showed no significant difference in cell adhesion between treated surfaces and the control. With respect to cell proliferation, the treated surface exhibited improved performance when compared to the control sample. We concluded that the process was efficient in removing primary oxides as well as in oxidizing titanium surfaces
Resumo:
Methotrexate (MTX) is a drug used in the chemotherapy of some kind of cancers, autoimmune diseases and non inflammatory resistant to corticosteroids uveits. However, the rapid plasmatic elimination limits its therapeutic success, which leads to administration of high doses to maintain the therapeutic levels in the target tissues, occurring potential side effects. The aim of this study was to obtain spray dried biodegradable poly-lactic acid co-glycolic acid (PLGA) microparticles containing MTX. Thus, suitable amounts of MTX and PLGA were dissolved in appropriate solvent system to obtain solutions at different ratios drug/polymer (10, 20, 30 and 50% m/m). The physicochemical characterizing included the quantitative analysis of the drug using a validate UV-VIS spectrophotometry method, scanning electron microscopy (SEM), infrared spectrophotometry (IR), thermal analyses and X-ray diffraction analysis. The in vitro release studies were carried out in a thermostatized phosphate buffer pH 7.4 (0.05 M KH2PO4) medium at 37°C ± 0.2 °C. The in vitro release date was subjected to different kinetics release models. The MTX-loaded PLGA microparticles showed a spherical shape with smooth surface and high level of entrapped drug. The encapsulation efficiency was greater then 80%. IR spectroscopy showed that there was no chemical bond between the compounds, suggesting just the possible occurrence of hydrogen bound interactions. The thermal analyses and X-ray diffraction analysis shown that MTX is homogeneously dispersed inside polymeric matrix, with a prevalent amorphous state or in a stable molecular dispersion. The in vitro release studies confirmed the sustained release for distinct MTX-loaded PLGA microparticles. The involved drug release mechanism was non Fickian diffusion, which was confirmed by Kornmeyer-Peppas kinetic model. The experimental results demonstrated that the MTX-loaded PLGA microparticles were successfully obtained by spray drying and its potential as prolonged drug release system.
Resumo:
The benznidazole (BNZ) is the only alternative for Chagas disease treatment in Brazil. This drug has low solubility, which restricts its dissolution rate. Thus, the present work aimed to study the BNZ interactions in binary systems with beta cyclodextrin (β-CD) and hydroxypropyl-beta cyclodextrin (HP-β-CD), in order to increase the apparent aqueous solubility of drug. The influence of seven hydrophilic polymers, triethanolamine (TEA) and 1-methyl-2- pyrrolidone (NMP) in benznidazole apparent aqueous solubility, as well as the formation of inclusion complexes was also investigated. The interactions in solution were predicted and investigated using phase solubility diagram methodology, nuclear magnetic resonance of protons (RMN) and molecular modeling. Complexes were obtained in solid phase by spray drying and physicochemical characterization included the UV-Vis spectrophotometric spectroscopy in the infrared region, scanning electron microscopy, X-ray diffraction and dissolution drug test from the different systems. The increment on apparent aqueous solubility of drug was achieved with a linear type (AL) in presence of both cyclodextrins at different pH values. The hydrophilic polymers and 1-methyl-2-pyrrolidone contributes to the formation of inclusion complexes, while the triethanolamine decreased the complex stability constant (Kc). The log-linear model applied for solubility diagrams revealed that both triethanolamine and 1-methyl-2-pyrrolidone showed an action cosolvent (both solvents) and complexing (1-methyl-2-pyrrolidone). The best results were obtained with complexes involving 1-methyl-2-pyrrolidone and hydroxypropylbeta- cyclodextrin, with an increased of benznidazole solubility in 27.9 and 9.4 times, respectively. The complexes effectiveness was proven by dissolution tests, in which the ternary complexes and physical mixtures involving 1-methyl- 2-pyrrolidone and both cyclodextrins investigated showed better results, showing the potential use as novel pharmaceutical ingredient, that leads to increased benznidazole bioavailability
Resumo:
Clays are natural materials that have great potential for use as excipients for solid dosage forms. Palygorskite is a type of clay that has hydrophilic properties as well as a large surface area, which could contribute to the dissolution of drugs. Thus, the present study aims to evaluate the use of palygorskite clay, from Piaui (Northeast region of Brazil), as a pharmaceutical excipient for solid dosage forms, using rifampicin and isoniazid as the model drugs. The former is a poorly soluble drug often associated with isoniazid for tuberculosis treatment. Palygorskite was characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), particle size, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and specific surface area (BET). The rheological and technological properties of palygorskite were determined and compared to those of talc, magnesium stearate and Aersosil 200. Mixtures between drugs and palygorskite were analyzed by differential scanning calorimetry (DSC), thermogravimetric analysis (TG) combined with thermal analysis (DTA) and Fourier Transform Infrared Spectroscopy (FT-IR), where the results were compared with those of the individual compounds. In addition, dissolution studies of solid dispersions and capsules containing the drugs, mixed with either palygorskite or a mixture of talc and magnesium stearate, were performed. The results showed that palygorskite has small particles with a high surface area. Its rheological characteristics were better than those of others commonly used glidants and lubricants. There was no interaction between palygorskite and the drugs (rifampicin and isoniazid). Among the dispersions studied, the mixture with palygorskite (5%) showed the highest drug dissolution when compared to other excipients. The dissolution of the rifampicin capsules containing palygosrkite was faster in higher concentrations. However, these differences were statistically different only in the first minutes of the dissolution experiment. The dissolution profile of isoniazid was also statistically different on the initial part of the experiment. The formulations prepared with isoniazid and palygorskite showed higher drug dissolution, but it was in descending order of concentration. According to these results, the palygorskite clay used in this study has great potential for application as an excipient for solid dosage forms
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Resumo:
New drug delivery systems have been used to increase chemotherapy efficacy due the possible drug resistance of cancer cells. Poly (lactic acid) (PLA) microparticles are able to reduce toxicity and prolong methotrexate (MTX) release. In addition, the use of PLA/poloxamer polymer blends can improve drug release due to changes in the interaction of particles with biological surfaces. The aim of this study was developing spray dried biodegradable MTX-loaded microparticles and evaluate PLA interactions with different kinds of Pluronic® (PLUF127 and PLUF68) in order to modulate drug release. The variables included different drug:polymer (1:10, 1:4.5, 1:3) and polymer:copolymer ratios (25:75, 50:50, 75:25). The precision and accuracy of spray drying method was confirmed assessing drug loading into particles (75.0- 101.3%). The MTX/PLA microparticles showed spherical shape with an apparently smooth surface, which was dependent on the PLU ratio used into blends particles. XRD and thermal analysis demonstrated that the drug was homogeneously dispersed into polymer matrix, whereas the miscibility among components was dependent on the used polymer:copolymer ratio. No new drug- polymer bond was identified by FTIR analysis. The in vitro performance of MTX-loaded PLA microparticles demonstrated an extended-release profile fitted using Korsmeyer- Peppas kinetic model. The PLU accelerated drug release rate possible due PLU leached in the matrix. Nevertheless, drug release studies carried out in cell culture demonstrated the ability of PLU modulating drug release from blend microparticles. This effect was confirmed by cytotoxicity observed according to the amount of drug released as a function of time. Thus, studied PLU was able to improve the performance of spray dried MTX-loaded PLA microparticles, which can be successfully used as carries for modulated drug delivery with potential in vivo application
Resumo:
The present study aimed to characterize the thermal profile of wood fired oven used by the red ceramic industry in Parelhas, in the Seridó region/RN, aiming to propose structural interventions that can contribute to increasing productivity and product quality, optimize wood consumption and mitigate existing losses during the burning process. The study was conducted at Cerâmica Esperança in the city of Parelhas -RN, Brazil, during the period from August 2012 to September 2013. Four treatments were performed with three replicates, ie, with, a total of 12 experimental units (burnings). In the first stage 4 treatments were performed with three replicates, totaling 12 experimental units (firings). In the second stage 2 treatments were performed with three replications, totaling 6 experimental units (firings). The physical characteristics of the wood were analyzed using standard NBR 11941 and NBR 7190 for basic density and moisture, respectively. The clay was used as a reference parameter for distinguishing treatments. For both the analysis and characterization was carried out using techniques of fluorescence X (XRF) rays, X-ray diffraction (XRD) analysis, particle size analysis (FA). In the first and second stages were monitored: the time during the firing process, the amount of wood used at each firing, the number of parts enfornadas for subsequent determination of the percentages of losses, but also product quality. To characterize the thermal profile of the oven, we measured the temperature at 15 points scored in the surface charge put into the oven. Measurements were taken every 30 minutes from preheat until the end of burning, using a pyrometer laser sight sighting from preheating until the end of burning. In the second step 12 metal cylinders distributed on the oven walls, and the cylinder end walls 8 of the furnace 2 and rollers on each side walls are installed equidistant to 17 cm from the soil and the surface 30 of the wall are installed. The cylinders distributed on the front were placed 50 cm above the furnace, and the base of the oven 20 cm distant from the ground. 10 also thermocouples were installed, and five thermocouples distributed 1.77 cm above the combustion chambers, and one thermocouple on each side, and three thermocouples in front of the oven. We carried out the measurements of the temperatures every 1 hour during the burning two hours in cooling the cylinders with a pyrometer and thermocouples for dattaloger. These were fixed with depth of 30 cm from the wall. After statistical analysis it was found that: the thermal profile of the furnace surface and at different heights was heterogeneous; and the ranges of density and moisture content of wood are within recommended for use as an energy source standards. We conclude that even at low temperatures reached during firing there was a significant production of good quality products, this is due to high concentrations of iron oxide and potassium oxide found in clay, which lowers the melting point of the piece. The average burn time for each step varied 650-2100 minutes wood consumption was on average 20 m3, product quality was on average 16% of first quality, 70% second, third and 5% to 10% loss . The distance between the wire and the surface of the oven was a significant parameter for all treatments, but with different variations, meaning that the wire should not be so generic and unique form, used as a criterion for completion of the burn process. The central part of the furnace was the area that reached higher temperature, and in a unified manner, with the highest concentration of top quality products. The ideal temperature curve, which provided the highest quality of ceramic products was achieved in the central part of the furnace
Resumo:
A distribuição dos minerais da fração argila depende de condições pedoambientais específicas. O estudo das relações entre atributos desses minerais e locais específicos de sua ocorrência na paisagem torna-se importante para o entendimento das relações entre a mineralogia e os demais atributos do solo. Este trabalho teve como objetivo avaliar os atributos cristalográficos, as razões Gt/(Gt+Hm) e Ct/(Ct+Gb) dos minerais da fração argila (hematita, goethita, caulinita e gibbsita) e o padrão de distribuição espacial destes em um Latossolo Vermelho eutroférrico sob cultivo de cana-de-açúcar há mais de 30 anos, com colheita no sistema cana crua. As amostras de solo foram coletadas nos pontos de cruzamento de uma malha, georreferenciados, com intervalos regulares de 10 m, e dimensão de 100 x 100 m, na profundidade de 0,2-0,4 m, totalizando 119 pontos, em uma área de 1 ha. As amostras de solos foram analisadas quimicamente. Posteriormente, a fração argila foi submetida à difração de raios X. Foram feitas as análises estatísticas e geoestatísticas dos atributos cristalográficos dos minerais analisados. Mapas de krigagem foram realizados para a visualização da variabilidade espacial dos atributos. Todos os atributos estudados apresentaram dependência espacial, e os atributos mineralógicos apresentaram-se relacionados com variações das formas do relevo. A gibbsita apresentou o maior diâmetro médio do cristal (DMC) entre os minerais da fração argila estudados, e a goethita foi o mineral que apresentou a maior variação do DMC e da largura à meia altura. Os maiores valores do DMC da goethita, hematita e gibbsita foram encontrados no compartimento II, caracterizado por uma área côncavo-convexa.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Os objetivos deste trabalho foram estudar as relações solo-paisagem em uma litosseqüência de transição arenito-basalto e verificar a similaridade dos limites de superfícies geomórficas mapeados no campo com os limites mapeados a partir de técnicas geoestatísticas. Foi realizado o mapeamento de uma área de 530 ha, utilizando-se equipamento de GPS, e em seguida elaborou-se o Modelo de Elevação Digital, que possibilitou o estabelecimento da transeção de 2.100 m a partir do topo. Ao longo da transeção, o terreno foi estaqueado a intervalos regulares de 50 m, nos quais foram realizadas medidas da altitude para confecção do perfil altimétrico. As superfícies geomórficas foram identificadas e delimitadas conforme critérios topográficos e estratigráficos, com base em intensas investigações de campo. Coletaram-se amostras de solo em pontos laterais em 67 locais, nas superfícies geomórficas identificadas, nas profundidades de 0,0-0,25 m e 0,80-1,00 m. Além disso, foram abertas trincheiras nos segmentos de vertente inseridos nas superfícies geomórficas mapeadas. As amostras coletadas foram analisadas quanto a densidade do solo, textura, Ca2+, K+, Mg2+, SB, CTC, V, pH (água e KCl), SiO2, Al2O3 e Fe2O3 (ataque por H2SO4), óxidos de Fe livres extraído com ditionito-citrato-bicarbonato e ferro mal cristalizado extraídos com oxalato de amônio. A fração argila desferrificada foi analisada por difração de raios X. A compartimentação da paisagem em superfícies geomórficas e a identificação do material de origem mostraram-se bastante eficientes para entendimento da variação dos atributos do solo. A análise individual desses atributos por meio de estatística univariada auxiliou na discriminação das três superfícies geomórficas. O uso de técnicas de geoestatística permitiu a confirmação de que mesmo os atributos do solo apresentaram limites próximos aos das superfícies geomórficas.
Resumo:
Em um segmento de vertente com substrato de arenito em contato com basalto, regionalmente muito freqüente, pretendeu-se não só relacionar as superfícies geomórficas com os atributos físicos, químicos e mineralógicos dos Latossolos nelas encontrados, mas também testar métodos geoestatísticos para localização de limites dessas superfícies. Usando critérios geomorfológicos, três superfícies foram identificadas e topograficamente caracterizadas. Os solos foram amostrados, a intervalos regulares de 25 m, na profundidade de 0,6 a 0,8 m (topo do horizonte B), em uma transeção de 1.700 m perfazendo 109 pontos. Nas amostras, foram analisados: densidade de partículas, granulometria, CTC do solo, CTC da argila, Fe total da argila (ataque por H2SO4) e óxidos de Fe livres (por dissolução seletiva). A fração argila desferrificada foi analisada por difração de raios X. Com base na estratigrafia e variações do relevo local, foram identificadas e diferenciadas, no campo, três superfícies geomórficas. Analisaram-se também o perfil altimétrico e o modelo de elevação digital do terreno. Observou-se que as três diferentes superfícies estão bem relacionadas com os atributos físicos, químicos e mineralógicos dos seus respectivos solos. Na parte inferior desta vertente, superfície mais recente e sobre basalto, em Latossolo Vermelho eutroférrico típico, foram encontradas as maiores variabilidades da declividade, da argila e de Fe. As variações da inclinação do terreno, quando analisadas sistematicamente pelo split moving windows dissimilarity analysis (análise estatística de dissimilaridade, em segmentos móveis), mostraram que este método estatístico pode ser usado para ajudar a localizar os limites entre superfícies geomórficas. As variações dos solos da transeção, e arredores, mostraram-se relacionadas com idade, inclinação do terreno e litologia. O trabalho geomórfico detalhado forneceu importantes informações para subsidiar os trabalhos de levantamento de solos e de pedogênese.
Resumo:
With the increase in cement consumption, it has quickly become one of the inputs most consumed by mankind over the last century. This has caused an increase in CO2 emissions, as cement production releases large quantities of this gas into the atmosphere. Adding this fact to the growing consciousness of environmental preservation, it has led to a search for alternatives to cement to complement its derivatives, in the form of waste materials like the ashes. This research aimed to analyze the properties of mortars in fresh and hardened state with partial replacement of Portland cement by residual algaroba wood ash (CRLA) potteries produced by the state of Rio Grande do Norte. The CRLA was collected and sieved, where part of it was ground and characterized in comparison with that just sifted, being characterized according to its chemical composition, grain size, fineness, density, bulk density and index of pozzolanic activity. It was found that the wood ash does not act as pozzolan, and grinding it has not changed its characteristics compared to those just sifted, not justifying its use. Two traces were adopted for this research: 1:3 (cement: fine sand) and 1:2:8 (cement: hydrated lime: medium sand); both in volume, using as materials the CRLA just sifted, CP II F-32 Portland cement, CH-I hydrated lime, river sand and water from the local utility. For each trace were adopted six percentages of partial replacement of cement for wood ash: 0% (control) 5%, 7%, 10%, 12% and 15%. In the fresh state, the mortars were tested towards their consistency index and mass density. In the hardened state, they were tested towards their tensile strength in bending, compressive strength and tensile adhesion strength, and its mass density in the hardened state. The mortar was also analyzed by scanning electron microscopy and X-ray diffraction. Furthermore, it was classified according to NBR 13281 (2005). The results showed that up to a content of 5% substitution and for both traces, the residual algaroba wood ash can replace Portland cement without compromising the mortars microstructure and its fresh and hardened state
Resumo:
Ceramic substrates have been investigated by researchers around the world and has achieved a high interest in the scientific community, because they had high dielectric constants and excellent performance in the structures employed. Such ceramics result in miniaturized structures with dimensions well reduced and high radiation efficiency. In this work, we have used a new ceramic material called lead zinc titanate in the form of Zn0,8Pb0,2TiO3, capable of being used as a dielectric substrate in the construction of various structures of antennas. The method used in constructing the ceramic combustion synthesis was Self- Sustained High Temperature (SHS - "Self-Propagating High-Temperature Synthesis") which is defined as a process that uses highly exothermic reactions to produce various materials. Once initiated the reaction area in the reaction mixture, the heat generated is sufficient to become self-sustaining combustion in the form of a wave that propagates converting the reaction mixture into the product of interest. Were analyzed aspects of the formation of the composite Zn0,8Pb0,2TiO3 by SHS powders and characterized. The analysis consisted of determining the parameters of the reaction for the formation of the composite, as the ignition temperature and reaction mechanisms. The production of composite Zn0,8Pb0,2TiO3 by SHS performed in the laboratory, was the result of a total control of combustion temperature and after obtaining the powder began the development of ceramics. The product was obtained in the form of regular, alternating layers of porous ceramics and was obtained by uniaxial pressing. 10 The product was characterized by analysis of dilatometry, X-ray diffraction analysis and scanning electron microscopy. One of the contributions typically defined in this work is the development of a new dielectric material, nevertheless presented previously in the literature. Therefore, the structures of the antennas presented in this work consisted of new dielectric ceramics based Zn0,8Pb0,2TiO3 usually used as dielectric substrate. The materials produced were characterized in the microwave range. These are dielectrics with high relative permittivity and low loss tangent. The Ansoft HFSS, commercial program employee, using the finite element method, and was used for analysis of antennas studied in this work