917 resultados para TAV: Transfer and Adaptation of training Vouchers
Resumo:
The Na+/H+ exchanger isoform 3 (NHE3) is essential for HCO3- reabsorption in renal proximal tubules. The expression and function of NHE3 must adapt to acid-base conditions. The goal of this study was to elucidate the mechanisms responsible for higher proton secretion in proximal tubules during acidosis and to evaluate whether there are differences between metabolic and respiratory acidosis with regard to NHE3 modulation and, if so, to identify the relevant parameters that may trigger these distinct adaptive responses. We achieved metabolic acidosis by lowering HCO3- concentration in the cell culture medium and respiratory acidosis by increasing CO2 tension in the incubator chamber. We found that cell-surface NHE3 expression was increased in response to both forms of acidosis. Mild (pH 7.21 +/- 0.02) and severe (6.95 +/- 0.07) metabolic acidosis increased mRNA levels, at least in part due to up-regulation of transcription, whilst mild (7.11 +/- 0.03) and severe (6.86 +/- 0.01) respiratory acidosis did not up-regulate NHE3 expression. Analyses of the Nhe3 promoter region suggested that the regulatory elements sensitive to metabolic acidosis are located between -466 and -153 bp, where two consensus binding sites for SP1, a transcription factor up-regulated in metabolic acidosis, were localised. We conclude that metabolic acidosis induces Nhe3 promoter activation, which results in higher mRNA and total protein level. At the plasma membrane surface, NHE3 expression was increased in metabolic and respiratory acidosis alike, suggesting that low pH is responsible for NHE3 displacement to the cell surface.
Resumo:
The Work Disability Diagnosis Interview (WoDDI) is a structured interview guide developed by the University of Sherbrooke, Canada to help clinicians detect the most important work-related disability predictors and to identify one or more causes of prolonged absenteeism. This methodological study aims for the cross-cultural adaptation of the WoDDI for the Brazilian context. The method followed international guidelines for studies of this kind, including the following steps: initial translation, synthesis of translations, back translation, evaluation by an expert committee and testing of the penultimate version. These steps allowed obtaining conceptual, semantic, idiomatic, experiential and operational equivalences, in addition to content validity. The results showed that the translated WoDDI is adapted to the Brazilian context and can be used after training.
Resumo:
The objective of this study was to perform the translation on and cultural adaptation of the Global Appraisal of Individual Needs - Initial instrument, and calculate its content validity index. This is a methodological study designed for the cultural adaptation of the instrument. The instrument was translated into Portuguese in two versions that originated the synthesis of the translations, which were then submitted to the evaluation of four judges, experts in the field of alcohol and other drugs. After the suggested changes were made, the instrument was back-translated and resubmitted to the judges and authors of the original instrument, resulting in the final version of the instrument, Avaliacao Global das Necessidades Individuais - Inicial. The content validity index of the instrument was 0.91, considered valid according to the literature. The instrument Avaliacao Global das Necessidades Individuais - Inicial was culturally adapted to the Portuguese language spoken in Brazil; however, it was not submitted to tests with the target population, which suggests further studies should be performed to test its reliability and validity.
Resumo:
STUDY DESIGN: Clinical measurement. OBJECTIVE: To translate and culturally adapt the Lower Extremity Functional Scale (LEFS) into a Brazilian Portuguese version, and to test the construct and content validity and reliability of this version in patients with knee injuries. BACKGROUND: There is no Brazilian Portuguese version of an instrument to assess the function of the lower extremity after orthopaedic injury. METHODS: The translation of the original English version of the LEFS into a Brazilian Portuguese version was accomplished using standard guidelines and tested in 31 patients with knee injuries. Subsequently, 87 patients with a variety of knee disorders completed the Brazilian Portuguese LEES, the Medical Outcomes Study 36-Item Short-Form Health Survey, the Western Ontario and McMaster Universities Osteoarthritis Index, and the International Knee Documentation Committee Subjective Knee Evaluation Form and a visual analog scale for pain. All patients were retested within 2 days to determine reliability of these measures. Validation was assessed by determining the level of association between the Brazilian Portuguese LEFS and the other outcome measures. Reliability was documented by calculating internal consistency, test-retest reliability, and standard error of measurement. RESULTS: The Brazilian Portuguese LEES had a high level of association with the physical component of the Medical Outcomes Study 36-Item Short-Form Health Survey (r = 0.82), the Western Ontario and McMaster Universities Osteoarthritis Index (r = 0.87), the International Knee Documentation Committee Subjective Knee Evaluation Form (r = 0.82), and the pain visual analog scale (r = -0.60) (all, P<.05). The Brazilian Portuguese LEES had a low level of association with the mental component of the Medical Outcomes Study 36-Item Short-Form Health Survey (r = 0.38, P<.05). The internal consistency (Cronbach alpha = .952) and test-retest reliability (intraclass correlation coefficient = 0.957) of the Brazilian Portuguese version of the LEES were high. The standard error of measurement was low (3.6) and the agreement was considered high, demonstrated by the small differences between test and retest and the narrow limit of agreement, as observed in Bland-Altman and survival-agreement plots. CONCLUSION: The translation of the LEFS into a Brazilian Portuguese version was successful in preserving the semantic and measurement properties of the original version and was shown to be valid and reliable in a Brazilian population with knee injuries. J Ort hop Sports Phys Ther 2012;42(11):932-939, Epub 9 October 2012. doi:10.2519/jospt.2012.4101
Resumo:
This study aims to compare and validate two soil-vegetation-atmosphere-transfer (SVAT) schemes: TERRA-ML and the Community Land Model (CLM). Both SVAT schemes are run in standalone mode (decoupled from an atmospheric model) and forced with meteorological in-situ measurements obtained at several tropical African sites. Model performance is quantified by comparing simulated sensible and latent heat fluxes with eddy-covariance measurements. Our analysis indicates that the Community Land Model corresponds more closely to the micrometeorological observations, reflecting the advantages of the higher model complexity and physical realism. Deficiencies in TERRA-ML are addressed and its performance is improved: (1) adjusting input data (root depth) to region-specific values (tropical evergreen forest) resolves dry-season underestimation of evapotranspiration; (2) adjusting the leaf area index and albedo (depending on hard-coded model constants) resolves overestimations of both latent and sensible heat fluxes; and (3) an unrealistic flux partitioning caused by overestimated superficial water contents is reduced by adjusting the hydraulic conductivity parameterization. CLM is by default more versatile in its global application on different vegetation types and climates. On the other hand, with its lower degree of complexity, TERRA-ML is much less computationally demanding, which leads to faster calculation times in a coupled climate simulation.
Resumo:
A mathematical model and numerical simulations are presented to investigate the dynamics of gas, oil and water flow in a pipeline-riser system. The pipeline is modeled as a lumped parameter system and considers two switchable states: one in which the gas is able to penetrate into the riser and another in which there is a liquid accumulation front, preventing the gas from penetrating the riser. The riser model considers a distributed parameter system, in which movable nodes are used to evaluate local conditions along the subsystem. Mass transfer effects are modeled by using a black oil approximation. The model predicts the liquid penetration length in the pipeline and the liquid level in the riser, so it is possible to determine which type of severe slugging occurs in the system. The method of characteristics is used to simplify the differentiation of the resulting hyperbolic system of equations. The equations are discretized and integrated using an implicit method with a predictor-corrector scheme for the treatment of the nonlinearities. Simulations corresponding to severe slugging conditions are presented and compared to results obtained with OLGA computer code, showing a very good agreement. A description of the types of severe slugging for the three-phase flow of gas, oil and water in a pipeline-riser system with mass transfer effects are presented, as well as a stability map. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
OBJECTIVE: The purpose of this study was to evaluate the following: 1) the effects of continuous exercise training and interval exercise training on the end-tidal carbon dioxide pressure (PETCO2) response during a graded exercise test in patients with coronary artery disease; and 2) the effects of exercise training modalities on the association between PETCO2 at the ventilatory anaerobic threshold (VAT) and indicators of ventilatory efficiency and cardiorespiratory fitness in patients with coronary artery disease. METHODS: Thirty-seven patients (59.7 +/- 1.7 years) with coronary artery disease were randomly divided into two groups: continuous exercise training (n = 20) and interval exercise training (n = 17). All patients performed a graded exercise test with respiratory gas analysis before and after three months of the exercise training program to determine the VAT, respiratory compensation point (RCP) and peak oxygen consumption. RESULTS: After the interventions, both groups exhibited increased cardiorespiratory fitness. Indeed, the continuous exercise and interval exercise training groups demonstrated increases in both ventilatory efficiency and PETCO2 values at VAT, RCP, and peak of exercise. Significant associations were observed in both groups: 1) continuous exercise training (PETCO(2)VAT and cardiorespiratory fitness r = 0.49; PETCO(2)VAT and ventilatory efficiency r = -0.80) and 2) interval exercise training (PETCO(2)VAT and cardiorespiratory fitness r = 0.39; PETCO(2)VAT and ventilatory efficiency r = -0.45). CONCLUSIONS: Both exercise training modalities showed similar increases in PETCO2 levels during a graded exercise test in patients with coronary artery disease, which may be associated with an improvement in ventilatory efficiency and cardiorespiratory fitness.
Resumo:
PURPOSE: To evaluate the effect of inspiratory muscle training (IMT) on cardiac autonomic modulation and on peripheral nerve sympathetic activity in patients with chronic heart failure (CHF). METHODS: Functional capacity, low-frequency (LF) and high-frequency (HF) components of heart rate variability, muscle sympathetic nerve activity inferred by microneurography, and quality of life were determined in 27 patients with CHF who had been sequentially allocated to 1 of 2 groups: (1) control group (with no intervention) and (2) IMT group. Inspiratory muscle training consisted of respiratory exercises, with inspiratory threshold loading of seven 30-minute sessions per week for a period of 12 weeks, with a monthly increase of 30% in maximal inspiratory pressure (PImax) at rest. Multivariate analysis was applied to detect differences between baseline and followup period. RESULTS: Inspiratory muscle training significantly increased PImax (59.2 +/- 4.9 vs 87.5 +/- 6.5 cmH(2)O, P = .001) and peak oxygen uptake (14.4 +/- 0.7 vs 18.9 +/- 0.8 mL.kg(-1).min(-1), P = .002); decreased the peak ventilation (V. E) +/- carbon dioxide production (V-CO2) ratio (35.8 +/- 0.8 vs 32.5 +/- 0.4, P = .001) and the (V) over dotE +/-(V) over dotCO(2) slope (37.3 +/- 1.1 vs 31.3 +/- 1.1, P = .004); increased the HF component (49.3 +/- 4.1 vs 58.4 +/- 4.2 normalized units, P = .004) and decreased the LF component (50.7 +/- 4.1 vs 41.6 +/- 4.2 normalized units, P = .001) of heart rate variability; decreased muscle sympathetic nerve activity (37.1 +/- 3 vs 29.5 +/- 2.3 bursts per minute, P = .001); and improved quality of life. No significant changes were observed in the control group. CONCLUSION: Home-based IMT represents an important strategy to improve cardiac and peripheral autonomic controls, functional capacity, and quality of life in patients with CHF.
Resumo:
Objective: to adapt and validate the Patient Expectations and Satisfaction with Prenatal Care instrument for use in Brazil. It contains 41 items divided into two dimensions: expectations and satisfaction. The adapted version was submitted to analysis for stability, convergent construct validity, and internal consistency (Cronbach’s alpha) for distinct groups and dimensions. Method: 119 pregnant women receiving prenatal care were interviewed and 26 of these women answered the instrument twice (retest). Internal consistency was appropriate (Cronbach’s alpha ≥ 0.70); test-retest presented strong correlation (r=0.82; p<0.001) for the domain expectations and moderate correlation (r=0.66; p<0.001) for the satisfaction domain. The analysis confirmed that the instrument’s adapted version is valid in the studied group. Results: there is strong evidence for the validity and reliability of the instrument’s adaptation. Conclusion: the instrument needs to be tested in groups of pregnant women with different social characteristics.
Resumo:
[EN] This paper attempts to explain individual variation in wages by estimating different wage equations. The study has two goals: first, to analyze the effect of years of schooling on the wages of vocational training graduates using a more precise measure for schooling than that commonly used in wage equations; and second, to analyze the effect on these wages of the match or mismatch between the knowledge and the skills acquired in the schooling and the needs of the job. The analysis shows that knowledge and skills acquired through vocational training (over-/under- education and over-/under- skilling), have a statistically significant influence on wages.
Resumo:
The hydrogen production in the green microalga Chlamydomonas reinhardtii was evaluated by means of a detailed physiological and biotechnological study. First, a wide screening of the hydrogen productivity was done on 22 strains of C. reinhardtii, most of which mutated at the level of the D1 protein. The screening revealed for the first time that mutations upon the D1 protein may result on an increased hydrogen production. Indeed, productions ranged between 0 and more than 500 mL hydrogen per liter of culture (Torzillo, Scoma et al., 2007a), the highest producer (L159I-N230Y) being up to 5 times more performant than the strain cc124 widely adopted in literature (Torzillo, Scoma, et al., 2007b). Improved productivities by D1 protein mutants were generally a result of high photosynthetic capabilities counteracted by high respiration rates. Optimization of culture conditions were addressed according to the results of the physiological study of selected strains. In a first step, the photobioreactor (PBR) was provided with a multiple-impeller stirring system designed, developed and tested by us, using the strain cc124. It was found that the impeller system was effectively able to induce regular and turbulent mixing, which led to improved photosynthetic yields by means of light/dark cycles. Moreover, improved mixing regime sustained higher respiration rates, compared to what obtained with the commonly used stir bar mixing system. As far as the results of the initial screening phase are considered, both these factors are relevant to the hydrogen production. Indeed, very high energy conversion efficiencies (light to hydrogen) were obtained with the impeller device, prooving that our PBR was a good tool to both improve and study photosynthetic processes (Giannelli, Scoma et al., 2009). In the second part of the optimization, an accurate analysis of all the positive features of the high performance strain L159I-N230Y pointed out, respect to the WT, it has: (1) a larger chlorophyll optical cross-section; (2) a higher electron transfer rate by PSII; (3) a higher respiration rate; (4) a higher efficiency of utilization of the hydrogenase; (5) a higher starch synthesis capability; (6) a higher per cell D1 protein amount; (7) a higher zeaxanthin synthesis capability (Torzillo, Scoma et al., 2009). These information were gathered with those obtained with the impeller mixing device to find out the best culture conditions to optimize productivity with strain L159I-N230Y. The main aim was to sustain as long as possible the direct PSII contribution, which leads to hydrogen production without net CO2 release. Finally, an outstanding maximum rate of 11.1 ± 1.0 mL/L/h was reached and maintained for 21.8 ± 7.7 hours, when the effective photochemical efficiency of PSII (ΔF/F'm) underwent a last drop to zero. If expressed in terms of chl (24.0 ± 2.2 µmoles/mg chl/h), these rates of production are 4 times higher than what reported in literature to date (Scoma et al., 2010a submitted). DCMU addition experiments confirmed the key role played by PSII in sustaining such rates. On the other hand, experiments carried out in similar conditions with the control strain cc124 showed an improved final productivity, but no constant PSII direct contribution. These results showed that, aside from fermentation processes, if proper conditions are supplied to selected strains, hydrogen production can be substantially enhanced by means of biophotolysis. A last study on the physiology of the process was carried out with the mutant IL. Although able to express and very efficiently utilize the hydrogenase enzyme, this strain was unable to produce hydrogen when sulfur deprived. However, in a specific set of experiments this goal was finally reached, pointing out that other than (1) a state 1-2 transition of the photosynthetic apparatus, (2) starch storage and (3) anaerobiosis establishment, a timely transition to the hydrogen production is also needed in sulfur deprivation to induce the process before energy reserves are driven towards other processes necessary for the survival of the cell. This information turned out to be crucial when moving outdoor for the hydrogen production in a tubular horizontal 50-liter PBR under sunlight radiation. First attempts with laboratory grown cultures showed that no hydrogen production under sulfur starvation can be induced if a previous adaptation of the culture is not pursued outdoor. Indeed, in these conditions the hydrogen production under direct sunlight radiation with C. reinhardtii was finally achieved for the first time in literature (Scoma et al., 2010b submitted). Experiments were also made to optimize productivity in outdoor conditions, with respect to the light dilution within the culture layers. Finally, a brief study of the anaerobic metabolism of C. reinhardtii during hydrogen oxidation has been carried out. This study represents a good integration to the understanding of the complex interplay of pathways that operate concomitantly in this microalga.
Resumo:
Here, we present the adaptation and optimization of (i) the solvothermal and (ii) the metal-organic chemical vapor deposition (MOCVD) approach as simple methods for the high-yield synthesis of MQ2 (M=Mo, W, Zr; Q = O, S) nanoparticles. Extensive characterization was carried out using X-ray diffraction (XRD), scanning and transmission electron micros¬copy (SEM/TEM) combined with energy dispersive X-ray analysis (EDXA), Raman spectroscopy, thermal analyses (DTA/TG), small angle X-ray scattering (SAXS) and BET measurements. After a general introduction to the state of the art, a simple route to nanostructured MoS2 based on the decomposition of the cluster-based precursor (NH4)2Mo3S13∙xH2O under solvothermal conditions (toluene, 653 K) is presented. Solvothermal decomposition results in nanostructured material that is distinct from the material obtained by decomposition of the same precursor in sealed quartz tubes at the same temperature. When carried out in the presence of the surfactant cetyltrimethyl¬ammonium bromide (CTAB), the decomposition product exhibits highly disordered MoS2 lamellae with high surface areas. The synthesis of WS2 onion-like nanoparticles by means of a single-step MOCVD process is discussed. Furthermore, the results of the successful transfer of the two-step MO¬CVD based synthesis of MoQ2 nanoparticles (Q = S, Se), comprising the formation of amorphous precursor particles and followed by the formation of fullerene-like particles in a subsequent annealing step to the W-S system, are presented. Based on a study of the temperature dependence of the reactions a set of conditions for the formation of onion-like structures in a one-step reaction could be derived. The MOCVD approach allows a selective synthesis of open and filled fullerene-like chalcogenide nanoparticles. An in situ heating stage transmission electron microscopy (TEM) study was employed to comparatively investigate the growth mechanism of MoS2 and WS2 nanoparticles obtained from MOCVD upon annealing. Round, mainly amorphous particles in the pristine sample trans¬form to hollow onion-like particles upon annealing. A significant difference between both compounds could be demonstrated in their crystallization conduct. Finally, the results of the in situ hea¬ting experiments are compared to those obtained from an ex situ annealing process under Ar. Eventually, a low temperature synthesis of monodisperse ZrO2 nanoparticles with diameters of ~ 8 nm is introduced. Whereas the solvent could be omitted, the synthesis in an autoclave is crucial for gaining nano-sized (n) ZrO2 by thermal decomposition of Zr(C2O4)2. The n-ZrO2 particles exhibits high specific surface areas (up to 385 m2/g) which make them promising candidates as catalysts and catalyst supports. Co-existence of m- and t-ZrO2 nano-particles of 6-9 nm in diameter, i.e. above the critical particle size of 6 nm, demonstrates that the particle size is not the only factor for stabilization of the t-ZrO2 modification at room temperature. In conclusion, synthesis within an autoclave (with and without solvent) and the MOCVD process could be successfully adapted to the synthesis of MoS2, WS2 and ZrO2 nanoparticles. A comparative in situ heating stage TEM study elucidated the growth mechanism of MoS2 and WS2 fullerene-like particles. As the general processes are similar, a transfer of this synthesis approach to other layered transition metal chalcogenide systems is to be expected. Application of the obtained nanomaterials as lubricants (MoS2, WS2) or as dental filling materials (ZrO2) is currently under investigation.
Resumo:
The introduction of dwarfed rootstocks in apple crop has led to a new concept of intensive planting systems with the aim of producing early high yield and with returns of the initial high investment. Although yield is an important aspect to the grower, the consumer has become demanding regards fruit quality and is generally attracted by appearance. To fulfil the consumer’s expectations the grower may need to choose a proper training system along with an ideal pruning technique, which ensure a good light distribution in different parts of the canopy and a marketable fruit quality in terms of size and skin colour. Although these aspects are important, these fruits might not reach the proper ripening stage within the canopy because they are often heterogeneous. To describe the variability present in a tree, a software (PlantToon®), was used to recreate the tree architecture in 3D in the two training systems. The ripening stage of each of the fruits was determined using a non-destructive device (DA-Meter), thus allowing to estimate the fruit ripening variability. This study deals with some of the main parameters that can influence fruit quality and ripening stage within the canopy and orchard management techniques that can ameliorate a ripening fruit homogeneity. Significant differences in fruit quality were found within the canopies due to their position, flowering time and bud wood age. Bi-axis appeared to be suitable for high density planting, even though the fruit quality traits resulted often similar to those obtained with a Slender Spindle, suggesting similar fruit light availability within the canopies. Crop load confirmed to be an important factor that influenced fruit quality as much as the interesting innovative pruning method “Click”, in intensive planting systems.