950 resultados para Skew normal
Resumo:
Experiments have been conducted to examine the mechanisms behind the coupling between corner separation and centreline separation when holding a normal shock in a rectangular channel. The study has focused on a M ∞ = 1.5 normal shock held in a wind tunnel with a parallel rectangular cross-section. The primary mechanism explaining the link between the corner separation size and the centreline separation appears to be the generation of compression waves which act to smear the adverse pressure gradient imposed upon other parts of the flow. In addition, the origin of the λ-foot leading leg appears to be depended upon the size of the corner separations. Experimental results indicate that the alteration of the λ-region, which occurs in the supersonic portion of the SBLI, is more important than the generation of any blockage in the subsonic region downstream of the shock wave. Copyright © 2012 by H. Babinsky, D.M.F. Burton.
Resumo:
The normal shock wave / boundary layer interaction (normal SBLI) is important to the operation and performance of a supersonic inlet, and the normal SBLI is particularly prominent in external compression inlets. To improve our understanding of such interactions, it is helpful to make use of fundamental flows which capture the main elements of inlets, without resorting to the level of complexity and system integration associated with full-geometry inlets. In this paper, several fundamental fiow-fleld configurations have been considered as possible test cases to represent the normal SBLI aspects found in typical external compression inlets, and it was found that the spillage-diffuser more closely retains the basic flow features of an external compression inlet than the other configurations. In particular, this flow-fleld allows the normal shock Mach number as well as the amount and rate of subsonic diffusion to be all held approximately constant mid independent of the application of flow control. In addition, a survey of several external compression inlets was conducted to quantify the flow and geometric parameters of the spillage-diffuser relevant to actual inlets. The results indicated that such a flow may be especially relevant if the terminal Mach number is about 1.3 to 1.4, the confinement parameter is around 10%, the width around twice or three times the height, and with the area expansion just downstream of the shock on the conservative side of the stall limit for incompressible diffusers. © 2013 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.
Resumo:
An experimental study on normal hole bleed in a supersonic turbulent boundary layer has been conducted. A combination of LDV, Schlieren imagery and oil flow visualization were used to provide a better understanding of the three-dimensional flow field surrounding a supersonic bleed array. Experiments were performed at Mach numbers of 1.8 and 2.5, while previously published results at Mach numbers of 1.3 and 1.5 were also incorporated. The bleed system was capable of removing up to approximately 10% of the incoming boundary layer through a tunnel-spanning array of discrete holes with diameters the same order of magnitude of boundary layer displacement thickness. Inspection of boundary layer profiles downstream of the bleed region indicates that vorticity generated by the discrete holes can have a substantial influence on changes to the boundary layer shape factor and skin friction coefficient, through modification of the lower 20% of the boundary layer. This vorticity was visualized through oil-flow visualization, and LDV measurements, showing the development of two vortices off each bleed hole, and corresponding upwash and downwash regions with far-reaching three dimensional effects. © 2013 by J. M. Oorebeek and H. Babinsky.
Resumo:
A number of VG configurations have been examined in a inlet relevant fiow-fleld which includes a terminal shock wave and subsequent subsonic diffuser. The flow-fleld was found to be highly sensitive to VG configuration. While the performance of one vane VG configuration was good over a wide range of streamwise positions, another quite similar vane configuration tended to perforin less well-especially when positioned further from the separation-and work is ongoing to determine the reasons behind tliis behavior. In addition, it was found that vane-type VG configurations were appreciably better at reducing separation than their micro-ramp counterparts. When combined with bleed in the centre-span region upstream of the VGs, the performance of vane type VGs was further enhanced and was the best of any configuration. © 2013 by Neil Titchener, Holger Babinsky and Eric Loth.
Canonical normal shock wave/boundary-layer interaction flows relevant to external compression inlets
Resumo:
The normal shock wave/boundary-layer interaction is important to the operation and performance of a supersonic inlet, and the normal shock wave/boundary-layer interaction is particularly prominent in external compression inlets. To improve understanding of such interactions, it is helpful to make use of fundamental flows that capture the main elements of inlets, without resorting to the level of complexity and system integration associated with full-geometry inlets. In this paper, several fundamental flowfield configurations have been considered as possible test cases to represent the normal shock wave/boundary-layer interaction aspects found in typical external compression inlets, and it was found that the spillage diffuser more closely retains the basic flow features of an external compression inlet than the other configurations. In particular, this flowfield allows the normal shock Mach number as well as the amount and rate of subsonic diffusion to all be held approximately constant and independent of the application of flow control. In addition, a survey of several external compression inlets was conducted to quantify the flow and geometric parameters of the spillage diffuser relevant to actual inlets. The results indicated that such a flow may be especially relevant if the terminal Mach number is about 1.3 to 1.4, the confinement parameter is around 10%, and the width is around twice or three times the height. In addition, the area expansion downstream of the shock should be limited to the conservative side of incipient stall based on incompressible diffusers. Copyright © 2013 by the authors.
Resumo:
Except for the complement C1q, the immunological functions of other C1q family members have remained unclear. Here we describe zebrafish C1q-like, whose transcription and translation display a uniform distribution in early embryos, and are restricted to mid-hind brain and eye in later embryos. In vitro studies showed that C1q-like could inhibit the apoptosis induced by ActD and CHX in EPC cells, through repressing caspase 3/9 activities. Moreover, its physiological roles were studied by morpholino-mediated knockdown in zebrafish embryogenesis. In comparison with control embryos, the C1q-like knockdown embryos display obvious defects in the head and cramofacial development mediated through p53-induced apoptosis, which was confirmed by the in vitro transcribed C1q-like mRNA or p53 MO co-injection. TUNEL assays revealed extensive cell death, and caspase 3/9 activity measurement also revealed about two folds increase in C1q-like morphant embryos, which was inhibited by p53 MO co-injection. Real-time quantitative PCR showed the up-regulation expression of several apoptosis regulators such as p53, mdm2, p21, Box and caspase 3, and down-regulation expression of hbae1 in the C1q-like morphant embryos. Knockdown of C1q-like in zebrafish embryos decreased hemoglobin production and impaired the organization of mesencephalic vein and other brain blood vessels. Interestingly, exposure of zebrafish embryos to UV resulted in an increase in mRNA expression of C1q-like, whereas over-expression of C1q-like was not enough resist to the damage. Furthermore, C1q-like transcription was up-regulated in response to pathogen Aeromonas hydrophila, and embryo survival significantly decreased in the C1q-like morphants after exposure to the bacteria. The data suggested that C1q-like might play an antiapoptotic and protective role in inhibiting p53-dependent and caspase 3/9-mediated apoptosis during embryogenesis, especially in the brain development, and C1q-like should be a novel regulator of cell survival during zebrafish embryogenesis. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
This paper looks at active control of the normal shock wave/turbulent boundary layer interaction (SBLI) using smart flap actuators. The actuators are manufactured by bonding piezoelectric material to an inert substrate to control the bleed/suction rate through a plenum chamber. The cavity provides communication of signals across the shock, allowing rapid thickening of the boundary layer approaching the shock, which splits into a series of weaker shocks forming a lambda shock foot, reducing wave drag. Active control allows optimum control of the interaction, as it would be capable of positioning the control region around the original shock position and control the rate of mass transfer. © 2004 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.
Resumo:
The effect of streamwise slots on the interaction of a normal shock wave / turbulent boundary layer has been investigated experimentally at a Mach number of 1.3. The surface pressure distribution for the controlled interaction was found to be significantly smeared, featuring a distinct plateau. This was due to a change in shock structure from a typical unseparated normal shock wave boundary layer interaction to a large bifurcated Lambda type shock pattern. Boundary layer velocity measurements downstream of the slots revealed a strong spanwise variation of boundary layer properties whereas the modified shock structure was relatively twodimensional. Oil flow visualisation indicated that in the presence of slots the boundary layer surface flow was highly three dimensional and confirmed that the effect of slots was mainly due to suction and blowing similar to that for passive control with uniform surface ventilation. Three hole probe measurements confirmed that the boundary layer was three dimensional and that the slots introduced vortical motion into the flowfield. Results indicate that when applied to an aerofoil, the control device has the potential to reduce wave drag while incurring only small viscous penalties. The introduction of streamwise vorticity may also be beneficial to delay trailing edge separation and the device is thought to be capable of postponing buffet onset. © 2001 by A N Smith.
Resumo:
Spermatogonia are the male germ stem cells that continuously produce sperm for the next generation. Spermatogenesis is a complicated process that proceeds through mitotic phase of stem cell renewal and differentiation, meiotic phase, and postmeiotic phase of spermiogenesis. Full recapitulation of spermatogenesis in vitro has been impossible, as generation of normal spermatogonial stem cell lines without immortalization and production of motile sperm from these cells after long-term culture have not been achieved. Here we report the derivation of a normal spermatogonial cell line from a mature medakafish testis without immortalization. After 140 passages during 2 years of culture, this cell line retains stable but growth factor-dependent proliferation, a diploid karyotype, and the phenotype and gene expression pattern of spermatogonial stem cells. Furthermore, we show that this cell line can undergo meiosis and spermiogenesis to generate motile sperm. Therefore, the ability of continuous proliferation and sperm production in culture is an intrinsic property of medaka spermatogonial stem cells, and immortalization apparently is not necessary to derive male germ cell cultures. Our findings and cell line will offer a unique opportunity to study and recapitulate spermatogenesis in vitro and to develop approaches for germ-line transmission.
Resumo:
We report on normal incidence p-i-n heterojunction photodiodes operating in the near-infrared region and realized in pure germanium on planar silicon substrate. The diodes were fabricated by ultrahigh vacuum chemical vapor deposition at 600 degrees C without thermal annealing and allowing the integration with standard silicon processes. Due to the 0.14% residual tensile strain generated by the thermal expansion mismatch between Ge and Si, an efficiency enhancement of nearly 3-fold at 1.55 mu m and the absorption edge shifting to longer wavelength of about 40 nm are achieved in the epitaxial Ge films. The diode with a responsivity of 0.23 A/W at 1.55 mu m wavelength and a bulk dark current density of 10 mA/cm(2) is demonstrated. These diodes with high performances and full compatibility with the CMOS processes enable monolithically integrating microphotonics and microelectronics on the same chip.
Resumo:
We report the device performance of normal-incidence (In, Ga)As/GaAs quantum dot intersubband infrared photodetectors. A primary intersubband transition peak is observed at the wavelength of 13 mu m (E-0 --> E-1) and a secondary peak at 11 mu m (E-0 --> E-2). The measured energy spacing in the conduction band of the quantum dots is in good agreement with low temperature photoluminescence measurement and calculations. A peak detectivity of 1 x 10(10) cm Hz(1/2)/W at 13 mu m was achieved at 40 K for these devices. (C) 1998 American Institute of Physics. [S0003-6951(98)01440-5].
Resumo:
The authors report for the first time, normal incident infrared absorption around the wavelength of 13-15 mu m from a 20 period InGaAs/GaAs quantum dot supperlatice (QDS). The structure of a QDS has been-confirmed by cross-section transmission electron microscopy (TEM) and by a photoluminescence spectrum (PL). This opens the way to high performance 8-14 mu m quantum dot infrared detectors.