993 resultados para C ... f, B ... n.


Relevância:

60.00% 60.00%

Publicador:

Resumo:

C2-1,1--2-(BINOL) (-)-(+)-(-)-2a-c12a-b3-3,3-()- 2,2-()-1,1--2-Suzuki3,3-8a-c9a-c19a-b20a-b1H NMR13C NMRIRESI-MS ZnEt28a-c9a-cZnEt296% e.e.51e.e.19a-b20a-bZnEt2(91% e.e.)e.e.71 ()

Relevância:

60.00% 60.00%

Publicador:

Resumo:

abc-/ab-/SbCl_5/SbCl_5PW_(12)SiW(12)a使-22--2-1bc

Relevância:

60.00% 60.00%

Publicador:

Resumo:

沿""""Monte Carlo广Monte CarloBCBCBA/BCB80BBBO80%BA/BCBBA/BCABBBABCABCABMonte Car toBBABABAABABACBCABCABCBCACABAA/CCABAC'

Relevância:

60.00% 60.00%

Publicador:

Resumo:

124155186186DCCABD~(13)C线线ABDABD1111LaNO_3_3·DDCDCCIaId[LnNO_3_3]_3(DCC)_2 LnCePrNdDCCIaIdB32321132111132COC5070 cm~(-1)32113211Ln-ONO_3~-NMR124155Prfod_3Eufod_3Ybfod_3'H~(13)Cδ线PrEuYb线YbPrEuΔ~(13)CΔ~1H3COS~-1/~r~3K546PrEuYbK_1GΔΔS°18C6Pr(clo_4)_320K_11641241551862481115B15C5B18CbDCC15DCCPr NdAβ_(Nd)~(Pr)=3.5

Relevância:

60.00% 60.00%

Publicador:

Resumo:

广1234N_(1923)Zn(II)Cd(II)Re(III)N_(1923)ZnCl_2CdCl_2Zn(SCN)_2N_(1923)HPMBPREIIIN_(1923)Sc(III)N_(1923)(TBP, DBBP)Zn(II)Cd(II)1. N_(1923)TBPDBBPZnCl_2 N_(1923)TBPDBBPZnCl_2(RNH_3Cl)_ZnCl_2·B(RNH_3Cl)_ZnCl_2·B (B = TBP·DBBP)ZnCl_2 + (RNH_3Cl)_3_((o)) + TBP_((o)) ~(K_(12)(TBP) (RNH_3Cl)_3·ZnCl_3ZnCl_2·TBP_((o)) ZnCl_2+Z/3(RNH_3Cl)_(3(o)) + DBBP_((o)) (RNH_3Cl)_2 ZnCl_2DBBP_((o))(RNH_3Cl)_ZnCl_(2(o)) + TBP_((o))~(B_(12)(TBP) (RNH_3Cl)_3·ZnCl_2TBP_((o)) (RNH_3Cl)_ZnCl_(2(o)) + DBBP_((o)) ~(B_(12)(DBBP) (RNH_3Cl)_2·ZnCl_2DBBP_((o)) + RNH_3Cl_((o))Zn(II)DBBP>TBPDεD_1/εDεD_εIRNMR2.N_(1923)TBPZn_(SCN)_2N_(1923)TBPZn(SCN)_2TBPZn(SCN)_2N_(1923)TBPZn(SCN)_2Zn(SCN)_3TBP. (RNH_3)_2Zn(SCN)_4·TBP,Zn(SCN)_4~(2-) + (RNH_3NO_3)_(2(o)) + TBP_((o)) (RNH_3)_2Zn(SCN)_TBP_((o)) + 2NO_3~-(RNH_3)_2Zn(SCN)_(4(o)) + TBP_((o)) ~(B'12) (RNH_3)_2Zn(SCN)_TBP_((o)) (a) (RNH_3NO_3)_(2(o)) + Zn(SCN)_3TBP_((o)) + 2SCN~-~("12)(RNH_3)Zn(SCN)_4βTBP_((o))+2TBP_((o))+2NO_3~- (b) (RNH_3NO_3)_(2(o)) + (RNH_3)_2Zn(SCN)_(4(o)) + 2SCN~- + Zn(SCN)_2.3TBP_((o)) ~("12)R(RNH_3)_2Zn(SCN)_4.TBP_((o)) + 2NO_3~- + TBP_((o)) (c) β"'_(12) > β'_(12) > β"_(12)cabSCN~- > Cl~_IR3. N_(1923)TBPDBBPCdIIN_(1923)TBPDBBPCd(II)(RNH_3Cl)_CdCl_2BCdCl_2 + 2/3 (RNH_3Cl)_(3(o)) + B_((o)) ~(K_(12)) (RNH_3Cl)_2·CdCl_2B_((o)) (RNH_3Cl_3CdCl_2_((o)) + B_((o)) ~(BR)(RNH_3Cl)_CdCl_2B_((o)) + RNH_3Cl_((o))Zn(II)Zn(II) > Cd(II)IRNMR. N_(1923)HPMBPREIIIN_(1923)HPMBPREIIIRE~(3+ = La~(3+), Pr~(3+), Eu~(3+), Gd~(3+), Tb~(3+), Er~(3+), Yb~(3+)Y~(3+)RNH_3Ln(PMBP)_4Pr(III)Ln~(3+) + 4HPMBP_((o)) + RNH_3Cl_((o)) RNH_3LN(PMBP)_(4(o)) + 4H~+ + Cl~- Ln(PMBP)_(3(o)) + RNH_3Cl_((o)) RNH_3Ln(PMBP)_(4(o)) + H~+ + Cl~- RZRNH_3ClPr(III)IRNMRN_(1923)Sc(III)RNH_3NO_3Sc(III)Sc(OH)_2~+SCN~-, NO_3~-RNH_3nO_3Sc(III)PHSc(OH)_2~+ + SCN~- + 2(RNH_3NO_3)_(2((o)) (RNH_3nO_3)_4.Sc(OH)_2SCN_((o)) Sc(OH)_2~+ + SCN~- + NO_3~- + (RNH_3NO_3)_(2(o)) (RNH_3NO_3)_2.Sc(OH)(SCN)NO_3 + OH~-

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PMMAbPTHFPMMAbPTHFPTHFbPMMAPMMAPTHFPTHFbPMMAPTHF-b-PMMAPEObPSPTHFbPMMAPTHFPTHF-b-PMMAPTHFABCPTHFbPMMAPEOPEOPEOPEOPMMAPTHF-b-PMMAPVCPTHFPEOPVCPTHFPTHF-b-PMMAPEOPEOPEOPTHFACABCDAB

Relevância:

60.00% 60.00%

Publicador:

Resumo:

T2R1VIR616157TZRTZR""3ABCBCABCATZRTZR"VIR152115VIRVIR1110MHI""V1RV1R1V1RV1R

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The magnetocapacitive response of a double-barrier structure (DBS), biased beyond resonances, has been employed to determine the density of states (DOS) of the two-dimensional electron gas residing in the accumulation layer on the incident side of the DBS. An adequate procedure is developed to compare the model calculation of the magnetocapacitance with the experimental C vs B curves measured at different temperatures and biases. The results show that the fitting is not only self-consistent but also remarkably good even in well-defined quantum Hall regimes. As a result, information about the DOS in strong magnetic fields could reliably be extracted.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigate high-field ferromagnetic resonance of superparamagnetic particles with uniaxial anisotropy, In this case, since the field is large enough to saturate the magnetization, the thermal orientational fluctuations of the magnetic moment of the particle are negligible. Thus, we derive the dynamic susceptibility of the system on the basis of an independent particle model. High-field ferromagnetic resonance has been performed on fine cobalt particles, The analysis of the spectra obtained at different frequencies allows us to estimate the effective magnetic anisotropy, the gyromagnetic ratio, and the transverse relaxation time. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

广 1313922706Coltricia tsugicola Y.C. Dai & B.K. CuiFomitiporia torreyae Y.C. Dai & B.K. CuiMegasporoporia cystidiolophora B.K. Cui & Y.C. DaiPerenniporia rhizomorpha B.K. Cui, Y.C. Dai & DecockRigidoporus minutus B.K. Cui & Y.C. DaiWrightoporia luteola B.K. Cui & Y.C. Dai9Abundisporus violaceus (Wakef.) RyvardenCeriporia camaresiana (Bourdot & Galzin) Bondartsev & SingerCeriporia lacerata N. Maek., Suhara & R. KondoColtriciella tasmanica (Cleland & Rodway) D.A. ReidInonotus rickii (Pat.) D.A. ReidPerenniporia minutissima (Yasuda) T. Hatt. & RyvardenRigidoporus cinereus Núñez & RyvardenTrametes ectypus (Berk. & M.A. Curtis) Gilb. & RyvardenTyromyces transformatus Núñez & Ryvarden 23Fomitiporia sp.Hapalopilus sp. Perenniporia sp. 3TYTY 4 435广广8 5 636311642825pH5.5

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Goldfussia yunnanensisCamchaya loloanaEvodia vestia4010 195%16A118-A218-A318--3-O--D--A43-O--D--A53-O--D--A66-E-7E-856-9β-10β-1112131415162-756-9 295%13A~C (17-19)1β-C(20)b-10-112122232425262717-20171820HepG2GI507.807.084.99 µg/mL 3E. vestia95%13282930313233(34)353637383940 419902007-126 Phytochemical investigation on Goldfussia yunnanensis, Camchaya loloana, and Evodia vestia, led to the isolation of 40 compounds, 10 of which were new ones. 1. Six new compounds were isolation from 95% ethanolic extract of the aerial parts of G. yunnanensis, and identified as 18-hydroxyhelioscopinolide A (2), 18-oxohelioscopinolide A (3), 18-hydroxy-3-O--D-glucopyranosylhelioscopinolide A (4), 3-O-β-D-glucopyranosylhelioscopinolide A (5),3-O-D-Galactopyranosyl helioscopinolide A (6), 6-O-trans-cinnamoyl E-harpagoside (7). The known compounds isolated were helioscopinolide A (1), E-harpagoside A (8), 5,6-isopropylidene E-harpagoside A (9), β-sitosterol (10), -daucosterol (11), oleanolic acid (12), cinnamic acid (13), ergosterol (14), stearic acid (15) and succinic acid (16). Compound 9 was an artifact. 2. Four new compounds, loloanolides A C (17 - 19) and -acetoxy-loloanolide C (20), were isolation from 95% ethanolic extract of the aerial parts of C. loloana. The known ones were β-sitosterol (10), -daucosterol (11), lupeol (21), betulin (22), betulinic acid (23), sinapyl (24), syringin (25), caffeic acid (26) and ursolic acid (27). The GI50 values of compounds 17, 18 and 20 to HepG2 cell line were 7.80, 7.08 and 4.99 µg/mL, respectively. 3. Thirteen were isolated from 95% ethanolic extract of the aerial parts of E. vestia for the first time. They were determined to be bergapten (28), xanthotoxin (29), isopimpinellin (30), esculetin (31), scopoletin (32), daphnetin (33), marmesin (34), skimmianine (35), confusameline (36), dictamine (37), obacunone (38), limonin (39) and p-hydroxy phenyl aldehyde (40). 4. The structures, biological activities, biotransformation and chemical syntheses of eudesmane-12, 6-olides from the Asteraceae during 1990-2007 were reviewed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

DNAHeLaB 16X线(1)X()Bragg(Bragg)25MeVu ~(40)Ar~(14+)SMMC7721 96h() 6MV X-1255keVμmB 1 6V792Gy(SF2)B16V79(P<001)(X-~(12)C)X-~(12)C54143~(12)CX-1255keVumB16HeLaV79SMMC-7721(RBE)RBERBELET1255keVmRBELETDNA1255keVμm~(12)C~(6+)B 16V79HeLaSMMC7721(D50)DNA(DSB)DNADNADNADNA5728MeVu50GyB16B161066650Gy50MeVu ~(12)C~(6+)S180S18090(P05)(2040Gy)TCD_(50)20Gy50MeVu ~(12)C~(6+)1Gy 30Gy63MeVu ~(12)C~(6+)2706Gy