272 resultados para walks
Resumo:
We generalize a previous model of time-delayed reaction–diffusion fronts (Fort and Méndez 1999 Phys. Rev. Lett. 82 867) to allow for a bias in the microscopic random walk of particles or individuals. We also present a second model which takes the time order of events (diffusion and reproduction) into account. As an example, we apply them to the human invasion front across the USA in the 19th century. The corrections relative to the previous model are substantial. Our results are relevant to physical and biological systems with anisotropic fronts, including particle diffusion in disordered lattices, population invasions, the spread of epidemics, etc
Resumo:
Abstract This seminar is a research discussion around a very interesting problem, which may be a good basis for a WAISfest theme. A little over a year ago Professor Alan Dix came to tell us of his plans for a magnificent adventure:to walk all of the way round Wales - 1000 miles 'Alan Walks Wales'. The walk was a personal journey, but also a technological and community one, exploring the needs of the walker and the people along the way. Whilst walking he recorded his thoughts in an audio diary, took lots of photos, wrote a blog and collected data from the tech instruments he was wearing. As a result Alan has extensive quantitative data (bio-sensing and location) and qualitative data (text, images and some audio). There are challenges in analysing individual kinds of data, including merging similar data streams, entity identification, time-series and textual data mining, dealing with provenance, ontologies for paths, and journeys. There are also challenges for author and third-party annotation, linking the data-sets and visualising the merged narrative or facets of it.
Resumo:
Texture is one of the most important visual attributes for image analysis. It has been widely used in image analysis and pattern recognition. A partially self-avoiding deterministic walk has recently been proposed as an approach for texture analysis with promising results. This approach uses walkers (called tourists) to exploit the gray scale image contexts in several levels. Here, we present an approach to generate graphs out of the trajectories produced by the tourist walks. The generated graphs embody important characteristics related to tourist transitivity in the image. Computed from these graphs, the statistical position (degree mean) and dispersion (entropy of two vertices with the same degree) measures are used as texture descriptors. A comparison with traditional texture analysis methods is performed to illustrate the high performance of this novel approach. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
We study random walks systems on Z whose general description follows. At time zero, there is a number N >= 1 of particles at each vertex of N, all being inactive, except for those placed at the vertex one. Each active particle performs a simple random walk on Z and, up to the time it dies, it activates all inactive particles that it meets along its way. An active particle dies at the instant it reaches a certain fixed total of jumps (L >= 1) without activating any particle, so that its lifetime depends strongly on the past of the process. We investigate how the probability of survival of the process depends on L and on the jumping probabilities of the active particles.
Resumo:
We consider a random walks system on Z in which each active particle performs a nearest-neighbor random walk and activates all inactive particles it encounters. The movement of an active particle stops when it reaches a certain number of jumps without activating any particle. We prove that if the process relies on efficient particles (i.e. those particles with a small probability of jumping to the left) being placed strategically on Z, then it might survive, having active particles at any time with positive probability. On the other hand, we may construct a process that dies out eventually almost surely, even if it relies on efficient particles. That is, we discuss what happens if particles are initially placed very far away from each other or if their probability of jumping to the right tends to I but not fast enough.
Resumo:
We consider one-dimensional random walks in random environment which are transient to the right. Our main interest is in the study of the sub-ballistic regime, where at time n the particle is typically at a distance of order O(n (kappa) ) from the origin, kappa is an element of (0, 1). We investigate the probabilities of moderate deviations from this behaviour. Specifically, we are interested in quenched and annealed probabilities of slowdown (at time n, the particle is at a distance of order O (n (nu 0)) from the origin, nu(0) is an element of (0, kappa)), and speedup (at time n, the particle is at a distance of order n (nu 1) from the origin , nu(1) is an element of (kappa, 1)), for the current location of the particle and for the hitting times. Also, we study probabilities of backtracking: at time n, the particle is located around (-n (nu) ), thus making an unusual excursion to the left. For the slowdown, our results are valid in the ballistic case as well.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Consider a one-dimensional environment with N randomly distributed sites. An agent explores this random medium moving deterministically with a spatial memory μ. A crossover from local to global exploration occurs in one dimension at a well-defined memory value μ1=log2N. In its stochastic version, the dynamics is ruled by the memory and by temperature T, which affects the hopping displacement. This dynamics also shows a crossover in one dimension, obtained computationally, between exploration schemes, characterized yet by the trajectory size (Np) (aging effect). In this paper we provide an analytical approach considering the modified stochastic version where the parameter T plays the role of a maximum hopping distance. This modification allows us to obtain a general analytical expression for the crossover, as a function of the parameters μ, T, and Np. Differently from what has been proposed by previous studies, we find that the crossover occurs in any dimension d. These results have been validated by numerical experiments and may be of great value for fixing optimal parameters in search algorithms. © 2013 American Physical Society.
Resumo:
Complex networks have attracted increasing interest from various fields of science. It has been demonstrated that each complex network model presents specific topological structures which characterize its connectivity and dynamics. Complex network classification relies on the use of representative measurements that describe topological structures. Although there are a large number of measurements, most of them are correlated. To overcome this limitation, this paper presents a new measurement for complex network classification based on partially self-avoiding walks. We validate the measurement on a data set composed by 40000 complex networks of four well-known models. Our results indicate that the proposed measurement improves correct classification of networks compared to the traditional ones. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4737515]
Resumo:
Recently there has been a considerable interest in dynamic textures due to the explosive growth of multimedia databases. In addition, dynamic texture appears in a wide range of videos, which makes it very important in applications concerning to model physical phenomena. Thus, dynamic textures have emerged as a new field of investigation that extends the static or spatial textures to the spatio-temporal domain. In this paper, we propose a novel approach for dynamic texture segmentation based on automata theory and k-means algorithm. In this approach, a feature vector is extracted for each pixel by applying deterministic partially self-avoiding walks on three orthogonal planes of the video. Then, these feature vectors are clustered by the well-known k-means algorithm. Although the k-means algorithm has shown interesting results, it only ensures its convergence to a local minimum, which affects the final result of segmentation. In order to overcome this drawback, we compare six methods of initialization of the k-means. The experimental results have demonstrated the effectiveness of our proposed approach compared to the state-of-the-art segmentation methods.