Ergodic crossover in partially self-avoiding stochastic walks


Autoria(s): Berbert, Juliana M.; González, Rodrigo Silva; Martinez, Alexandre Souto
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

27/05/2014

27/05/2014

11/09/2013

Resumo

Consider a one-dimensional environment with N randomly distributed sites. An agent explores this random medium moving deterministically with a spatial memory μ. A crossover from local to global exploration occurs in one dimension at a well-defined memory value μ1=log2N. In its stochastic version, the dynamics is ruled by the memory and by temperature T, which affects the hopping displacement. This dynamics also shows a crossover in one dimension, obtained computationally, between exploration schemes, characterized yet by the trajectory size (Np) (aging effect). In this paper we provide an analytical approach considering the modified stochastic version where the parameter T plays the role of a maximum hopping distance. This modification allows us to obtain a general analytical expression for the crossover, as a function of the parameters μ, T, and Np. Differently from what has been proposed by previous studies, we find that the crossover occurs in any dimension d. These results have been validated by numerical experiments and may be of great value for fixing optimal parameters in search algorithms. © 2013 American Physical Society.

Identificador

http://dx.doi.org/10.1103/PhysRevE.88.032119

Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, v. 88, n. 3, 2013.

1539-3755

1550-2376

http://hdl.handle.net/11449/76546

10.1103/PhysRevE.88.032119

WOS:000324238500003

2-s2.0-84885156953

2-s2.0-84885156953.pdf

Idioma(s)

eng

Relação

Physical Review E: Statistical, Nonlinear, and Soft Matter Physics

Direitos

closedAccess

Tipo

info:eu-repo/semantics/article