999 resultados para symmetric group
Resumo:
2000 Mathematics Subject Classification: Primary: 17A32; Secondary: 16R10, 16P99, 17B01, 17B30, 20C30
Resumo:
Красимир Йорджев, Христина Костадинова - В работата се разглежда една релация на еквивалентност в множеството от всички квадратни бинарни матрици. Обсъдена е комбинаторната задача за намиране мощността и елементите на фактормножеството относно тази релация. Разгледана е и възможността за получаване на някои специални елементи на това фактормножество. Предложен е алгоритъм за решаване на поставените задачи. Получените в статията резултати намират приложение при описанието топологията на различните тъкачни структури.
Resumo:
Let * be an involution of a group G extended linearly to the group algebra KG. We prove that if G contains no 2-elements and K is a field of characteristic p, 0 2, then the *-symmetric elements of KG are Lie nilpotent (Lie n-Engel) if and only if KG is Lie nilpotent (Lie n-Engel). (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Let F be an infinite field of characteristic different from 2, G a group and * an involution of G extended by linearity to an involution of the group algebra FG. Here we completely characterize the torsion groups G for which the *-symmetric units of FG satisfy a group identity. When * is the classical involution induced from g -> g(-1), g is an element of G, this result was obtained in [ A. Giambruno, S. K. Sehgal, A. Valenti, Symmetric units and group identities, Manuscripta Math. 96 (1998) 443-461]. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
∗ This work has been partially supported by the Bulgarian NSF under Contract No. I-506/1995.
Resumo:
Here we describe the results of some computational explorations in Thompson's group F. We describe experiments to estimate the cogrowth of F with respect to its standard finite generating set, designed to address the subtle and difficult question whether or not Thompson's group is amenable. We also describe experiments to estimate the exponential growth rate of F and the rate of escape of symmetric random walks with respect to the standard generating set.
Resumo:
This paper analyzes secession and group formation in a general model of contest inspired by Esteban and Ray (1999). This model encompasses as special cases rent seeking contests and policy conflicts, where agents lobby over the choice of a policy in a one-dimensional policy space. We show that in both models the grand coalition is the efficient coalition structure and agents are always better off in the grand coalition than in a symmetric coalition structure. Individual agents (in the rent seeking contest) and extremists (in the policy conflict) only have an incentive to secede when they anticipate that their secession will not be followed by additional secessions. Incentives to secede are lower when agents cooperate inside groups. The grand coalition emerges as the unique subgame perfect equilibrium outcome of a sequential game of coalition formation in rent seeking contests.
Resumo:
This study examined the independent effect of skewness and kurtosis on the robustness of the linear mixed model (LMM), with the Kenward-Roger (KR) procedure, when group distributions are different, sample sizes are small, and sphericity cannot be assumed. Methods: A Monte Carlo simulation study considering a split-plot design involving three groups and four repeated measures was performed. Results: The results showed that when group distributions are different, the effect of skewness on KR robustness is greater than that of kurtosis for the corresponding values. Furthermore, the pairings of skewness and kurtosis with group size were found to be relevant variables when applying this procedure. Conclusions: With sample sizes of 45 and 60, KR is a suitable option for analyzing data when the distributions are: (a) mesokurtic and not highly or extremely skewed, and (b) symmetric with different degrees of kurtosis. With total sample sizes of 30, it is adequate when group sizes are equal and the distributions are: (a) mesokurtic and slightly or moderately skewed, and sphericity is assumed; and (b) symmetric with a moderate or high/extreme violation of kurtosis. Alternative analyses should be considered when the distributions are highly or extremely skewed and samples sizes are small.
Resumo:
Let R be a commutative ring, G a group and RG its group ring. Let phi : RG -> RG denote the R-linear extension of an involution phi defined on G. An element x in RG is said to be phi-antisymmetric if phi(x) = -x. A characterization is given of when the phi-antisymmetric elements of RG commute. This is a completion of earlier work.
Resumo:
Analogous to *-identities in rings with involution we define *-identities in groups. Suppose that G is a torsion group with involution * and that F is an infinite field with char F not equal 2. Extend * linearly to FG. We prove that the unit group U of FG satisfies a *-identity if and only if the symmetric elements U(+) satisfy a group identity.
On bifurcation and symmetry of solutions of symmetric nonlinear equations with odd-harmonic forcings
Resumo:
In this work we study existence, bifurcation, and symmetries of small solutions of the nonlinear equation Lx = N(x, p, epsilon) + mu f, which is supposed to be equivariant under the action of a group OHm, and where f is supposed to be OHm-invariant. We assume that L is a linear operator and N(., p, epsilon) is a nonlinear operator, both defined in a Banach space X, with values in a Banach space Z, and p, mu, and epsilon are small real parameters. Under certain conditions we show the existence of symmetric solutions and under additional conditions we prove that these are the only feasible solutions. Some examples of nonlinear ordinary and partial differential equations are analyzed. (C) 1995 Academic Press, Inc.
Resumo:
In this paper we prove a Lions-type compactness embedding result for symmetric unbounded domains of the Heisenberg group. The natural group action on the Heisenberg group TeX is provided by the unitary group U(n) × {1} and its appropriate subgroups, which will be used to construct subspaces with specific symmetry and compactness properties in the Folland-Stein’s horizontal Sobolev space TeX. As an application, we study the multiplicity of solutions for a singular subelliptic problem by exploiting a technique of solving the Rubik-cube applied to subgroups of U(n) × {1}. In our approach we employ concentration compactness, group-theoretical arguments, and variational methods.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
We define Picard cycles on each smooth three-sheeted Galois cover C of the Riemann sphere. The moduli space of all these algebraic curves is a nice Shimura surface, namely a symmetric quotient of the projective plane uniformized by the complex two-dimensional unit ball. We show that all Picard cycles on C form a simple orbit of the Picard modular group of Eisenstein numbers. The proof uses a special surface classification in connection with the uniformization of a classical Picard-Fuchs system. It yields an explicit symplectic representation of the braid groups (coloured or not) of four strings.