870 resultados para reasoning biases
Resumo:
Technical Report to accompany Ownership for Reasoning About Parallelism. Documents type system which captures effects and the operational semantics for the language which is presented as part of the paper.
Resumo:
This paper has two central purposes: the first is to survey some of the more important examples of fallacious argument, and the second is to examine the frequent use of these fallacies in support of the psychological construct: Attention Deficit Hyperactivity Disorder (ADHD). The paper divides 12 familiar fallacies into three different categories—material, psychological and logical—and contends that advocates of ADHD often seem to employ these fallacies to support their position. It is suggested that all researchers, whether into ADHD or otherwise, need to pay much closer attention to the construction of their arguments if they are not to make truth claims unsupported by satisfactory evidence, form or logic.
Resumo:
An information filtering (IF) system monitors an incoming document stream to find the documents that match the information needs specified by the user profiles. To learn to use the user profiles effectively is one of the most challenging tasks when developing an IF system. With the document selection criteria better defined based on the users’ needs, filtering large streams of information can be more efficient and effective. To learn the user profiles, term-based approaches have been widely used in the IF community because of their simplicity and directness. Term-based approaches are relatively well established. However, these approaches have problems when dealing with polysemy and synonymy, which often lead to an information overload problem. Recently, pattern-based approaches (or Pattern Taxonomy Models (PTM) [160]) have been proposed for IF by the data mining community. These approaches are better at capturing sematic information and have shown encouraging results for improving the effectiveness of the IF system. On the other hand, pattern discovery from large data streams is not computationally efficient. Also, these approaches had to deal with low frequency pattern issues. The measures used by the data mining technique (for example, “support” and “confidences”) to learn the profile have turned out to be not suitable for filtering. They can lead to a mismatch problem. This thesis uses the rough set-based reasoning (term-based) and pattern mining approach as a unified framework for information filtering to overcome the aforementioned problems. This system consists of two stages - topic filtering and pattern mining stages. The topic filtering stage is intended to minimize information overloading by filtering out the most likely irrelevant information based on the user profiles. A novel user-profiles learning method and a theoretical model of the threshold setting have been developed by using rough set decision theory. The second stage (pattern mining) aims at solving the problem of the information mismatch. This stage is precision-oriented. A new document-ranking function has been derived by exploiting the patterns in the pattern taxonomy. The most likely relevant documents were assigned higher scores by the ranking function. Because there is a relatively small amount of documents left after the first stage, the computational cost is markedly reduced; at the same time, pattern discoveries yield more accurate results. The overall performance of the system was improved significantly. The new two-stage information filtering model has been evaluated by extensive experiments. Tests were based on the well-known IR bench-marking processes, using the latest version of the Reuters dataset, namely, the Reuters Corpus Volume 1 (RCV1). The performance of the new two-stage model was compared with both the term-based and data mining-based IF models. The results demonstrate that the proposed information filtering system outperforms significantly the other IF systems, such as the traditional Rocchio IF model, the state-of-the-art term-based models, including the BM25, Support Vector Machines (SVM), and Pattern Taxonomy Model (PTM).
Resumo:
This paper examines the development of student functional thinking during a teaching experiment that was conducted in two classrooms with a total of 45 children whose average age was nine years and six months. The teaching comprised four lessons taught by a researcher, with a second researcher and classroom teacher acting as participant observers. These lessons were designed to enable students to build mental representations in order to explore the use of function tables by focusing on the relationship between input and output numbers with the intention of extracting the algebraic nature of the arithmetic involved. All lessons were videotaped. The results indicate that elementary students are not only capable of developing functional thinking but also of communicating their thinking both verbally and symbolically.
Resumo:
Market failures involving the sale of complex merchandise, such as residential property, financial products and credit, have principally been attributed to information asymmetries. Existing legislative and regulatory responses were developed having regard to consumer protection policies based on traditional economic theories that focus on the notion of the ‘rational consumer’. Governmental responses therefore seek to impose disclosure obligations on sellers of complex goods or products to ensure that consumers have sufficient information upon which to make a decision. Emergent research, based on behavioural economics, challenges traditional ideas and instead focuses on the actual behaviour of consumers. This approach suggests that consumers as a whole do not necessarily benefit from mandatory disclosure because some, if not most, consumers do not pay attention to the disclosed information before they make a decision to purchase. The need for consumer policies to take consumer characteristics and behaviour into account is being increasingly recognised by governments, and most recently in the policy framework suggested by the Australian Productivity Commission
Resumo:
Recent claims of equivalence of animal and human reasoning are evaluated and a study of avian cognition serves as an exemplar of weaknesses in these arguments. It is argued that current research into neurobiological cognition lacks theoretical breadth to substantiate comparative analyses of cognitive function. Evaluation of a greater range of theoretical explanations is needed to verify claims of equivalence in animal and human cognition. We conclude by exemplifying how the notion of affordances in multi-scale dynamics can capture behavior attributed to processes of analogical and inferential reasoning in animals and humans.
Coordination of empirical laws and explanatory theory using model-based reasoning in Year 10 science
Resumo:
We report on a longitudinal research study of the development of novice programmers in their first semester of programming. In the third week, almost half of our sample of students could not answer an explain-in-plain-English question, for code consisting of just three assignment statements, which swapped the values in two variables. We regard code that swaps the values of two variables as the simplest case of where a programming student can manifest a SOLO relational response. Our results demonstrate that the problems many students face with understanding code can begin very early, on relatively trivial code. However, using traditional programming exercises, these problems often go undetected until late in the semester. New approaches are required to detect and fix these problems earlier.
Resumo:
When performances are evaluated they are very often presented in a sequential order. Previous research suggests that the sequential presentation of alternatives may induce systematic biases in the way performances are evaluated. Such a phenomenon has been scarcely studied in economics. Using a large dataset of performance evaluation in the Idol series (N=1522), this paper presents new evidence about the systematic biases in sequential evaluation of performances and the psychological phenomena at the origin of these biases.
Resumo:
With the emergence of multi-core processors into the mainstream, parallel programming is no longer the specialized domain it once was. There is a growing need for systems to allow programmers to more easily reason about data dependencies and inherent parallelism in general purpose programs. Many of these programs are written in popular imperative programming languages like Java and C]. In this thesis I present a system for reasoning about side-effects of evaluation in an abstract and composable manner that is suitable for use by both programmers and automated tools such as compilers. The goal of developing such a system is to both facilitate the automatic exploitation of the inherent parallelism present in imperative programs and to allow programmers to reason about dependencies which may be limiting the parallelism available for exploitation in their applications. Previous work on languages and type systems for parallel computing has tended to focus on providing the programmer with tools to facilitate the manual parallelization of programs; programmers must decide when and where it is safe to employ parallelism without the assistance of the compiler or other automated tools. None of the existing systems combine abstraction and composition with parallelization and correctness checking to produce a framework which helps both programmers and automated tools to reason about inherent parallelism. In this work I present a system for abstractly reasoning about side-effects and data dependencies in modern, imperative, object-oriented languages using a type and effect system based on ideas from Ownership Types. I have developed sufficient conditions for the safe, automated detection and exploitation of a number task, data and loop parallelism patterns in terms of ownership relationships. To validate my work, I have applied my ideas to the C] version 3.0 language to produce a language extension called Zal. I have implemented a compiler for the Zal language as an extension of the GPC] research compiler as a proof of concept of my system. I have used it to parallelize a number of real-world applications to demonstrate the feasibility of my proposed approach. In addition to this empirical validation, I present an argument for the correctness of the type system and language semantics I have proposed as well as sketches of proofs for the correctness of the sufficient conditions for parallelization proposed.