1000 resultados para psychogenetic perspective


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the early 1990's the University of Salford was typical of most pre-1992 Universities in that whilst students provided much of it's income, little attention was paid to pedagogy. As Warren Piper (1994) observed, University teachers were professional in their subject areas but generally did not seek to acquire a pedagogy of HE. This was the case in Alsford. Courses were efficiently run but only a minority of staff were engaged in actively considering learning and teaching issues. Instead staff time was spent on research and commercial activity.----- In the mid-1990's the teaching environment began to change significantly. As well as Dearing, the advent of QAA and teaching quality reviews, Salford was already experiencing changes in the characteristics of its student body. Wideing access was on our agenda before it was so predominant nationally. With increasing numbers and heterogeneity of students as well as these external factors, new challenges were facing the University and teaching domain.----- This paper describes how a culture which values teaching, learning and pedagogic inquiry is being created in the university. It then focuses on parts of this process specific to the Faculty of Business and Informatics, namely the Faculty's Learning and Teaching Research Network and the establishment of the Centre for Construction Education in the School of Construction and Property Management.----- The Faculty of Business and Informatics' Learning and Teaching Research Network aims to raise the profile, quality and volume of pedagogic research across the five schools in the faculty. The initiative is targeted at all academics regardless of previous research experience. We hope to grow and nurture research potential where it exists and to acknowledge and use the existing expertise of subject-based researchers in collaborative ventures. We work on the principle that people are deliged to share what they know but need appreciation and feedback for doing so. A further ain is to surface and celebrate the significant amount of tacit knowledge in the area of pedagogy evidenced by the strength of student and employer feedback in many areas of the faculty's teaching.----- The Faculty embraces generic and core management expertise but also includes applied management disciplines in information systems and construction and property management where internationally leading research activities and networked centres of excellence have been established. Drawing from this experience, and within the context of the Faculty network, a Centre for Construction Education is being established with key international external partners to develop a sustainable business model of an enterprising pedagogic centre that can undertake useful research to underpin teaching in the Faculty whilst offering sustainable business services to allow it to benefit from pump-priming grant funding.----- Internal and external networking are important elements in our plans and ongoing work. Key to this are our links with the LTSN subject centres (BEST and CEBE) and the LTSN generic centre. The paper discusses networking as a concept and gives examples of practices which have proved useful in this context.----- The academic influences on our approach are also examined. Dixon’s (2000) work examining how a range of companies succeed through internal knowledge sharing has provided a range of transferable practices. We also examine the notion of dialogue in this context, defined by Ballantyne (1999) as ‘The interactive human process of reasoning together which comes into being through interactions based on spontaneity or need and is enabled by trust’ Social constructionist principles of Practical Authorship (Shotter, 1993, Pavlica, Holman and Thorpe, 1998)) have also proved useful in developing our perspective on learning and knowledge creation within our community of practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: To review the titles, roles and scope of practice of Advanced Practice Nurses internationally.----- Background: There is a worldwide shortage of nurses but there is also an increased demand for nurses with enhanced skills who can manage a more diverse, complex and acutely ill patient population than ever before. As a result, a variety of nurses in advanced practice positions has evolved around the world. The differences in nomenclature have led to confusion over the roles, scope of practice and professional boundaries of nurses in an international context.----- Method: CINAHL, Medline, and the Cochrane database of Systematic Reviews were searched from 1987 to 2008. Information was also obtained through government health and professional organisation websites. All information in the literature regarding current and past status, and nomenclature of advanced practice nursing was considered relevant.----- Findings: There are many names for Advanced Practice Nurses, and although many of these roles are similar in their function, they can often have different titles.----- Conclusion: Advanced Practice Nurses are critical for the future, provide cost-effective care and are highly regarded by patients/clients. They will be a constant and permanent feature of future health care provision. However, clarification regarding their classification and regulation is necessary in some countries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In architecture courses, instilling a wider understanding of the industry specific representations practiced in the Building Industry is normally done under the auspices of Technology and Science subjects. Traditionally, building industry professionals communicated their design intentions using industry specific representations. Originally these mainly two dimensional representations such as plans, sections, elevations, schedules, etc. were produced manually, using a drawing board. Currently, this manual process has been digitised in the form of Computer Aided Design and Drafting (CADD) or ubiquitously simply CAD. While CAD has significant productivity and accuracy advantages over the earlier manual method, it still only produces industry specific representations of the design intent. Essentially, CAD is a digital version of the drawing board. The tool used for the production of these representations in industry is still mainly CAD. This is also the approach taken in most traditional university courses and mirrors the reality of the situation in the building industry. A successor to CAD, in the form of Building Information Modelling (BIM), is presently evolving in the Construction Industry. CAD is mostly a technical tool that conforms to existing industry practices. BIM on the other hand is revolutionary both as a technical tool and as an industry practice. Rather than producing representations of design intent, BIM produces an exact Virtual Prototype of any building that in an ideal situation is centrally stored and freely exchanged between the project team. Essentially, BIM builds any building twice: once in the virtual world, where any faults are resolved, and finally, in the real world. There is, however, no established model for learning through the use of this technology in Architecture courses. Queensland University of Technology (QUT), a tertiary institution that maintains close links with industry, recognises the importance of equipping their graduates with skills that are relevant to industry. BIM skills are currently in increasing demand throughout the construction industry through the evolution of construction industry practices. As such, during the second half of 2008, QUT 4th year architectural students were formally introduced for the first time to BIM, as both a technology and as an industry practice. This paper will outline the teaching team’s experiences and methodologies in offering a BIM unit (Architectural Technology and Science IV) at QUT for the first time and provide a description of the learning model. The paper will present the results of a survey on the learners’ perspectives of both BIM and their learning experiences as they learn about and through this technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The definition and operationalisation of interactional competence in speaking tests that entail co-construction of discourse is an area of language testing requiring further research. This article explores the reactions of four trained raters to paired candidates who oriented to asymmetric patterns of interaction in a discussion task. Through an analysis of candidate discourse combined with rater notes, stimulated verbal recalls, rater discussions and scores awarded for interactional effectiveness, the article examines the extent to which raters compensate or penalise candidates for their role in co-constructing asymmetric interactional patterns. The article argues that key features of the interaction are perceived by the raters as mutual achievements, and it further suggests that the awarding of shared scores for interactional competence is one way of acknowledging the inherently co-constructed nature of interaction in a paired speaking test.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The construction industry is categorised as being an information-intensive industry and described as one of the most important industries in any developed country, facing a period of rapid and unparalleled change (Industry Science Resources 1999) (Love P.E.D., Tucker S.N. et al. 1996). Project communications are becoming increasingly complex, with a growing need and fundamental drive to collaborate electronically at project level and beyond (Olesen K. and Myers M.D. 1999; Thorpe T. and Mead S. 2001; CITE 2003). Yet, the industry is also identified as having a considerable lack of knowledge and awareness about innovative information and communication technology (ICT) and web-based communication processes, systems and solutions which may prove beneficial in the procurement, delivery and life cycle of projects (NSW Government 1998; Kajewski S. and Weippert A. 2000). The Internet has debatably revolutionised the way in which information is stored, exchanged and viewed, opening new avenues for business, which only a decade ago were deemed almost inconceivable (DCITA 1998; IIB 2002). In an attempt to put these ‘new avenues of business’ into perspective, this report provides an overall ‘snapshot’ of current public and private construction industry sector opportunities and practices in the implementation and application of web-based ICT tools, systems and processes (e-Uptake). Research found that even with a reserved uptake, the construction industry and its participating organisations are making concerted efforts (fortunately with positive results) in taking up innovative forms of doing business via the internet, including e-Tendering (making it possible to manage the entire tender letting process electronically and online) (Anumba C.J. and Ruikar K. 2002; ITCBP 2003). Furthermore, Government (often a key client within the construction industry),and with its increased tendency to transact its business electronically, undoubtedly has an effect on how various private industry consultants, contractors, suppliers, etc. do business (Murray M. 2003) – by offering a wide range of (current and anticipated) e-facilities / services, including e-Tendering (Ecommerce 2002). Overall, doing business electronically is found to have a profound impact on the way today’s construction businesses operate - streamlining existing processes, with the growth in innovative tools, such as e-Tender, offering the construction industry new responsibilities and opportunities for all parties involved (ITCBP 2003). It is therefore important that these opportunities should be accessible to as many construction industry businesses as possible (The Construction Confederation 2001). Historically, there is a considerable exchange of information between various parties during a tendering process, where accuracy and efficiency of documentation is critical. Traditionally this process is either paper-based (involving large volumes of supporting tender documentation), or via a number of stand-alone, non-compatible computer systems, usually costly to both the client and contractor. As such, having a standard electronic exchange format that allows all parties involved in an electronic tender process to access one system only via the Internet, saves both time and money, eliminates transcription errors and increases speed of bid analysis (The Construction Confederation 2001). Supporting this research project’s aims and objectives, researchers set to determine today’s construction industry ‘current state-of-play’ in relation to e-Tendering opportunities. The report also provides brief introductions to several Australian and International e-Tender systems identified during this investigation. e-Tendering, in its simplest form, is described as the electronic publishing, communicating, accessing, receiving and submitting of all tender related information and documentation via the internet, thereby replacing the traditional paper-based tender processes, and achieving a more efficient and effective business process for all parties involved (NT Governement 2000; NT Government 2000; NSW Department of Commerce 2003; NSW Government 2003). Although most of the e-Tender websites investigated at the time, maintain their tendering processes and capabilities are ‘electronic’, research shows these ‘eTendering’ systems vary from being reasonably advanced to more ‘basic’ electronic tender notification and archiving services for various industry sectors. Research also indicates an e-Tender system should have a number of basic features and capabilities, including: • All tender documentation to be distributed via a secure web-based tender system – thereby avoiding the need for collating paperwork and couriers. • The client/purchaser should be able to upload a notice and/or invitation to tender onto the system. • Notification is sent out electronically (usually via email) for suppliers to download the information and return their responses electronically (online). • During the tender period, updates and queries are exchanged through the same e-Tender system. • The client/purchaser should only be able to access the tenders after the deadline has passed. • All tender related information is held in a central database, which should be easily searchable and fully audited, with all activities recorded. • It is essential that tender documents are not read or submitted by unauthorised parties. • Users of the e-Tender system are to be properly identified and registered via controlled access. In simple terms, security has to be as good as if not better than a manual tender process. Data is to be encrypted and users authenticated by means such as digital signatures, electronic certificates or smartcards. • All parties must be assured that no 'undetected' alterations can be made to any tender. • The tenderer should be able to amend the bid right up to the deadline – whilst the client/purchaser cannot obtain access until the submission deadline has passed. • The e-Tender system may also include features such as a database of service providers with spreadsheet-based pricing schedules, which can make it easier for a potential tenderer to electronically prepare and analyse a tender. Research indicates the efficiency of an e-Tender process is well supported internationally, with a significant number, yet similar, e-Tender benefits identified during this investigation. Both construction industry and Government participants generally agree that the implementation of an automated e-Tendering process or system enhances the overall quality, timeliness and cost-effectiveness of a tender process, and provides a more streamlined method of receiving, managing, and submitting tender documents than the traditional paper-based process. On the other hand, whilst there are undoubtedly many more barriers challenging the successful implementation and adoption of an e-Tendering system or process, researchers have also identified a range of challenges and perceptions that seem to hinder the uptake of this innovative approach to tendering electronically. A central concern seems to be that of security - when industry organisations have to use the Internet for electronic information transfer. As a result, when it comes to e-Tendering, industry participants insist these innovative tendering systems are developed to ensure the utmost security and integrity. Finally, if Australian organisations continue to explore the competitive ‘dynamics’ of the construction industry, without realising the current and future, trends and benefits of adopting innovative processes, such as e-Tendering, it will limit their globalising opportunities to expand into overseas markets and allow the continuation of international firms successfully entering local markets. As such, researchers believe increased knowledge, awareness and successful implementation of innovative systems and processes raises great expectations regarding their contribution towards ‘stimulating’ the globalisation of electronic procurement activities, and improving overall business and project performances throughout the construction industry sectors and overall marketplace (NSW Government 2002; Harty C. 2003; Murray M. 2003; Pietroforte R. 2003). Achieving the successful integration of an innovative e-Tender solution with an existing / traditional process can be a complex, and if not done correctly, could lead to failure (Bourn J. 2002).