970 resultados para preconditioning convection-diffusion equation matrix equation
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In literature the phenomenon of diffusion has been widely studied, however for nonextensive systems which are governed by a nonlinear stochastic dynamic, there are a few soluble models. The purpose of this study is to present the solution of the nonlinear Fokker-Planck equation for a model of potential with barrier considering a term of absorption. Systems of this nature can be observed in various chemical or biological processes and their solution enriches the studies of existing nonextensive systems.
Resumo:
In this paper, we investigate the invariance and integrability properties of an integrable two-component reaction-diffusion equation. We perform Painleve analysis for both the reaction-diffusion equation modelled by a coupled nonlinear partial differential equations and its general similarity reduced ordinary differential equation and confirm its integrability. Further, we perform Lie symmetry analysis for this model. Interestingly our investigations reveals a rich variety of particular solutions, which have not been reported in the literature, for this model. (C) 2000 Elsevier B.V. Ltd. All rights reserved.
Resumo:
We show that the wavefunctions 〈pq; λ|n〈, of the harmonic oscillator in the squeezed state representation, have the generalized Hermite polynomials as their natural orthogonal polynomials. These wavefunctions lead to generalized Poisson Distribution Pn(pq;λ), which satisfy an interesting pseudo-diffusion equation: ∂Pnp,q;λ) ∂λ= 1 4 [ ∂2 ∂p2-( 1 λ2) ∂2 ∂q2]P2(p,q;λ), in which the squeeze parameter λ plays the role of time. Th entropies Sn(λ) have minima at the unsqueezed states (λ=1), which means that squeezing or stretching decreases the correlation between momentum p and position q. © 1992.
Resumo:
In this thesis, numerical methods aiming at determining the eigenfunctions, their adjoint and the corresponding eigenvalues of the two-group neutron diffusion equations representing any heterogeneous system are investigated. First, the classical power iteration method is modified so that the calculation of modes higher than the fundamental mode is possible. Thereafter, the Explicitly-Restarted Arnoldi method, belonging to the class of Krylov subspace methods, is touched upon. Although the modified power iteration method is a computationally-expensive algorithm, its main advantage is its robustness, i.e. the method always converges to the desired eigenfunctions without any need from the user to set up any parameter in the algorithm. On the other hand, the Arnoldi method, which requires some parameters to be defined by the user, is a very efficient method for calculating eigenfunctions of large sparse system of equations with a minimum computational effort. These methods are thereafter used for off-line analysis of the stability of Boiling Water Reactors. Since several oscillation modes are usually excited (global and regional oscillations) when unstable conditions are encountered, the characterization of the stability of the reactor using for instance the Decay Ratio as a stability indicator might be difficult if the contribution from each of the modes are not separated from each other. Such a modal decomposition is applied to a stability test performed at the Swedish Ringhals-1 unit in September 2002, after the use of the Arnoldi method for pre-calculating the different eigenmodes of the neutron flux throughout the reactor. The modal decomposition clearly demonstrates the excitation of both the global and regional oscillations. Furthermore, such oscillations are found to be intermittent with a time-varying phase shift between the first and second azimuthal modes.
Resumo:
We prove global existence and uniqueness of strong solutions to the logarithmic porous medium type equation with fractional diffusion ?tu + (?)1/2 log(1 + u) = 0, posed for x ? R, with nonnegative initial data in some function space of LlogL type. The solutions are shown to become bounded and C? smooth in (x, t) for all positive times. We also reformulate this equation as a transport equation with nonlocal velocity and critical viscosity, a topic of current relevance. Interesting functional inequalities are involved.
Resumo:
"Prepared for American Mathematical Society Meeting, Los Angeles, California, Nov. 27, 1954."
Resumo:
Mathematical Subject Classification 2010: 35R11, 42A38, 26A33, 33E12.
Resumo:
MSC 2010: 26A33, 33E12, 34K29, 34L15, 35K57, 35R30
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Magdeburg, Univ., Fak. für Mathematik, Diss., 2011
Resumo:
The effect of hydrodynamic flow upon diffusion-limited deposition on a line is investigated using a Monte Carlo model. The growth process is governed by the convection and diffusion field. The convective diffusion field is simulated by the biased-random walker resulting from a superimposed drift that represents the convective flow. The development of distinct morphologies is found with varying direction and strength of drift. By introducing a horizontal drift parallel to the deposition plate, the diffusion-limited deposit changes into a single needle inclined to the plate. The width of the needle decreases with increasing strength of drift. The angle between the needle and the plate is about 45° at high flow rate. In the presence of an inclined drift to the plate, the convection-diffusion-limited deposit leads to the formation of a characteristic columnar morphology. In the limiting case where the convection dominates, the deposition process is equivalent to ballistic deposition onto an inclined surface.
Resumo:
Version abregée L'ischémie cérébrale est la troisième cause de mort dans les pays développés, et la maladie responsable des plus sérieux handicaps neurologiques. La compréhension des bases moléculaires et anatomiques de la récupération fonctionnelle après l'ischémie cérébrale est donc extrêmement importante et représente un domaine d'intérêt crucial pour la recherche fondamentale et clinique. Durant les deux dernières décennies, les chercheurs ont tenté de combattre les effets nocifs de l'ischémie cérébrale à l'aide de substances exogènes qui, bien que testées avec succès dans le domaine expérimental, ont montré un effet contradictoire dans l'application clinique. Une approche différente mais complémentaire est de stimuler des mécanismes intrinsèques de neuroprotection en utilisant le «modèle de préconditionnement» : une brève insulte protège contre des épisodes d'ischémie plus sévères à travers la stimulation de voies de signalisation endogènes qui augmentent la résistance à l'ischémie. Cette approche peut offrir des éléments importants pour clarifier les mécanismes endogènes de neuroprotection et fournir de nouvelles stratégies pour rendre les neurones et la glie plus résistants à l'attaque ischémique cérébrale. Dans un premier temps, nous avons donc étudié les mécanismes de neuroprotection intrinsèques stimulés par la thrombine, un neuroprotecteur «préconditionnant» dont on a montré, à l'aide de modèles expérimentaux in vitro et in vivo, qu'il réduit la mort neuronale. En appliquant une technique de microchirurgie pour induire une ischémie cérébrale transitoire chez la souris, nous avons montré que la thrombine peut stimuler les voies de signalisation intracellulaire médiées par MAPK et JNK par une approche moléculaire et l'analyse in vivo d'un inhibiteur spécifique de JNK (L JNK) .Nous avons également étudié l'impact de la thrombine sur la récupération fonctionnelle après une attaque et avons pu démontrer que ces mécanismes moléculaires peuvent améliorer la récupération motrice. La deuxième partie de cette étude des mécanismes de récupération après ischémie cérébrale est basée sur l'investigation des bases anatomiques de la plasticité des connections cérébrales, soit dans le modèle animal d'ischémie transitoire, soit chez l'homme. Selon des résultats précédemment publiés par divers groupes ,nous savons que des mécanismes de plasticité aboutissant à des degrés divers de récupération fonctionnelle sont mis enjeu après une lésion ischémique. Le résultat de cette réorganisation est une nouvelle architecture fonctionnelle et structurelle, qui varie individuellement selon l'anatomie de la lésion, l'âge du sujet et la chronicité de la lésion. Le succès de toute intervention thérapeutique dépendra donc de son interaction avec la nouvelle architecture anatomique. Pour cette raison, nous avons appliqué deux techniques de diffusion en résonance magnétique qui permettent de détecter les changements de microstructure cérébrale et de connexions anatomiques suite à une attaque : IRM par tenseur de diffusion (DT-IR1V) et IRM par spectre de diffusion (DSIRM). Grâce à la DT-IRM hautement sophistiquée, nous avons pu effectuer une étude de follow-up à long terme chez des souris ayant subi une ischémie cérébrale transitoire, qui a mis en évidence que les changements microstructurels dans l'infarctus ainsi que la modification des voies anatomiques sont corrélés à la récupération fonctionnelle. De plus, nous avons observé une réorganisation axonale dans des aires où l'on détecte une augmentation d'expression d'une protéine de plasticité exprimée dans le cône de croissance des axones (GAP-43). En appliquant la même technique, nous avons également effectué deux études, rétrospective et prospective, qui ont montré comment des paramètres obtenus avec DT-IRM peuvent monitorer la rapidité de récupération et mettre en évidence un changement structurel dans les voies impliquées dans les manifestations cliniques. Dans la dernière partie de ce travail, nous avons décrit la manière dont la DS-IRM peut être appliquée dans le domaine expérimental et clinique pour étudier la plasticité cérébrale après ischémie. Abstract Ischemic stroke is the third leading cause of death in developed countries and the disease responsible for the most serious long-term neurological disability. Understanding molecular and anatomical basis of stroke recovery is, therefore, extremely important and represents a major field of interest for basic and clinical research. Over the past 2 decades, much attention has focused on counteracting noxious effect of the ischemic insult with exogenous substances (oxygen radical scavengers, AMPA and NMDA receptor antagonists, MMP inhibitors etc) which were successfully tested in the experimental field -but which turned out to have controversial effects in clinical trials. A different but complementary approach to address ischemia pathophysiology and treatment options is to stimulate and investigate intrinsic mechanisms of neuroprotection using the "preconditioning effect": applying a brief insult protects against subsequent prolonged and detrimental ischemic episodes, by up-regulating powerful endogenous pathways that increase resistance to injury. We believe that this approach might offer an important insight into the molecular mechanisms responsible for endogenous neuroprotection. In addition, results from preconditioning model experiment may provide new strategies for making brain cells "naturally" more resistant to ischemic injury and accelerate their rate of functional recovery. In the first part of this work, we investigated down-stream mechanisms of neuroprotection induced by thrombin, a well known neuroprotectant which has been demonstrated to reduce stroke-induced cell death in vitro and in vivo experimental models. Using microsurgery to induce transient brain ischemia in mice, we showed that thrombin can stimulate both MAPK and JNK intracellular pathways through a molecular biology approach and an in vivo analysis of a specific kinase inhibitor (L JNK1). We also studied thrombin's impact on functional recovery demonstrating that these molecular mechanisms could enhance post-stroke motor outcome. The second part of this study is based on investigating the anatomical basis underlying connectivity remodeling, leading to functional improvement after stroke. To do this, we used both a mouse model of experimental ischemia and human subjects with stroke. It is known from previous data published in literature, that the brain adapts to damage in a way that attempts to preserve motor function. The result of this reorganization is a new functional and structural architecture, which will vary from patient to patient depending on the anatomy of the damage, the biological age of the patient and the chronicity of the lesion. The success of any given therapeutic intervention will depend on how well it interacts with this new architecture. For this reason, we applied diffusion magnetic resonance techniques able to detect micro-structural and connectivity changes following an ischemic lesion: diffusion tensor MRI (DT-MRI) and diffusion spectrum MRI (DS-MRI). Using DT-MRI, we performed along-term follow up study of stroke mice which showed how diffusion changes in the stroke region and fiber tract remodeling is correlating with stroke recovery. In addition, axonal reorganization is shown in areas of increased plasticity related protein expression (GAP 43, growth axonal cone related protein). Applying the same technique, we then performed a retrospective and a prospective study in humans demonstrating how specific DTI parameters could help to monitor the speed of recovery and show longitudinal changes in damaged tracts involved in clinical symptoms. Finally, in the last part of this study we showed how DS-MRI could be applied both to experimental and human stroke and which perspectives it can open to further investigate post stroke plasticity.
Resumo:
Convective transport, both pure and combined with diffusion and reaction, can be observed in a wide range of physical and industrial applications, such as heat and mass transfer, crystal growth or biomechanics. The numerical approximation of this class of problemscan present substantial difficulties clue to regions of high gradients (steep fronts) of the solution, where generation of spurious oscillations or smearing should be precluded. This work is devoted to the development of an efficient numerical technique to deal with pure linear convection and convection-dominated problems in the frame-work of convection-diffusion-reaction systems. The particle transport method, developed in this study, is based on using rneshless numerical particles which carry out the solution along the characteristics defining the convective transport. The resolution of steep fronts of the solution is controlled by a special spacial adaptivity procedure. The serni-Lagrangian particle transport method uses an Eulerian fixed grid to represent the solution. In the case of convection-diffusion-reaction problems, the method is combined with diffusion and reaction solvers within an operator splitting approach. To transfer the solution from the particle set onto the grid, a fast monotone projection technique is designed. Our numerical results confirm that the method has a spacial accuracy of the second order and can be faster than typical grid-based methods of the same order; for pure linear convection problems the method demonstrates optimal linear complexity. The method works on structured and unstructured meshes, demonstrating a high-resolution property in the regions of steep fronts of the solution. Moreover, the particle transport method can be successfully used for the numerical simulation of the real-life problems in, for example, chemical engineering.
Resumo:
This work is devoted to the development of numerical method to deal with convection diffusion dominated problem with reaction term, non - stiff chemical reaction and stiff chemical reaction. The technique is based on the unifying Eulerian - Lagrangian schemes (particle transport method) under the framework of operator splitting method. In the computational domain, the particle set is assigned to solve the convection reaction subproblem along the characteristic curves created by convective velocity. At each time step, convection, diffusion and reaction terms are solved separately by assuming that, each phenomenon occurs separately in a sequential fashion. Moreover, adaptivities and projection techniques are used to add particles in the regions of high gradients (steep fronts) and discontinuities and transfer a solution from particle set onto grid point respectively. The numerical results show that, the particle transport method has improved the solutions of CDR problems. Nevertheless, the method is time consumer when compared with other classical technique e.g., method of lines. Apart from this advantage, the particle transport method can be used to simulate problems that involve movingsteep/smooth fronts such as separation of two or more elements in the system.