Symmetry analysis of an integrable reaction-diffusion equation


Autoria(s): Kraenkel, Roberto André; Senthilvelan, M.
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

20/05/2014

20/05/2014

01/03/2001

Resumo

In this paper, we investigate the invariance and integrability properties of an integrable two-component reaction-diffusion equation. We perform Painleve analysis for both the reaction-diffusion equation modelled by a coupled nonlinear partial differential equations and its general similarity reduced ordinary differential equation and confirm its integrability. Further, we perform Lie symmetry analysis for this model. Interestingly our investigations reveals a rich variety of particular solutions, which have not been reported in the literature, for this model. (C) 2000 Elsevier B.V. Ltd. All rights reserved.

Formato

463-474

Identificador

http://dx.doi.org/10.1016/S0960-0779(99)00200-3

Chaos Solitons & Fractals. Oxford: Pergamon-Elsevier B.V., v. 12, n. 3, p. 463-474, 2001.

0960-0779

http://hdl.handle.net/11449/23485

10.1016/S0960-0779(99)00200-3

WOS:000166332500004

Idioma(s)

eng

Publicador

Elsevier B.V.

Relação

Chaos Solitons & Fractals

Direitos

closedAccess

Tipo

info:eu-repo/semantics/article