Classical solutions for a logarithmic fractional diffusion equation
Data(s) |
01/06/2014
|
---|---|
Resumo |
We prove global existence and uniqueness of strong solutions to the logarithmic porous medium type equation with fractional diffusion ?tu + (?)1/2 log(1 + u) = 0, posed for x ? R, with nonnegative initial data in some function space of LlogL type. The solutions are shown to become bounded and C? smooth in (x, t) for all positive times. We also reformulate this equation as a transport equation with nonlocal velocity and critical viscosity, a topic of current relevance. Interesting functional inequalities are involved. |
Formato |
application/pdf |
Identificador | |
Idioma(s) |
eng |
Publicador |
E.T.S. Arquitectura (UPM) |
Relação |
http://oa.upm.es/40259/1/INVE_MEM_2014_218884.pdf arXiv:1205.2223v2 info:eu-repo/semantics/altIdentifier/doi/doi:10.1016/j.matpur.2013.10.009 |
Direitos |
http://creativecommons.org/licenses/by-nc-nd/3.0/es/ info:eu-repo/semantics/openAccess |
Fonte |
Journal de Mathematiques Pures Et Appliquees, ISSN 0021-7824, 2014-06, Vol. 101, No. 6 |
Palavras-Chave | #Matemáticas |
Tipo |
info:eu-repo/semantics/article Artículo PeerReviewed |