Classical solutions for a logarithmic fractional diffusion equation


Autoria(s): Rodríguez Santa María, Ana; Pablo, Arturo de; Quirós, Fernando; Vázquez, Juan Luis
Data(s)

01/06/2014

Resumo

We prove global existence and uniqueness of strong solutions to the logarithmic porous medium type equation with fractional diffusion ?tu + (?)1/2 log(1 + u) = 0, posed for x ? R, with nonnegative initial data in some function space of LlogL type. The solutions are shown to become bounded and C? smooth in (x, t) for all positive times. We also reformulate this equation as a transport equation with nonlocal velocity and critical viscosity, a topic of current relevance. Interesting functional inequalities are involved.

Formato

application/pdf

Identificador

http://oa.upm.es/40259/

Idioma(s)

eng

Publicador

E.T.S. Arquitectura (UPM)

Relação

http://oa.upm.es/40259/1/INVE_MEM_2014_218884.pdf

arXiv:1205.2223v2

info:eu-repo/semantics/altIdentifier/doi/doi:10.1016/j.matpur.2013.10.009

Direitos

http://creativecommons.org/licenses/by-nc-nd/3.0/es/

info:eu-repo/semantics/openAccess

Fonte

Journal de Mathematiques Pures Et Appliquees, ISSN 0021-7824, 2014-06, Vol. 101, No. 6

Palavras-Chave #Matemáticas
Tipo

info:eu-repo/semantics/article

Artículo

PeerReviewed