994 resultados para mobile art
Resumo:
In this paper we focus on the challenging problem of place categorization and semantic mapping on a robot with-out environment-specific training. Motivated by their ongoing success in various visual recognition tasks, we build our system upon a state-of-the-art convolutional network. We overcome its closed-set limitations by complementing the network with a series of one-vs-all classifiers that can learn to recognize new semantic classes online. Prior domain knowledge is incorporated by embedding the classification system into a Bayesian filter framework that also ensures temporal coherence. We evaluate the classification accuracy of the system on a robot that maps a variety of places on our campus in real-time. We show how semantic information can boost robotic object detection performance and how the semantic map can be used to modulate the robot’s behaviour during navigation tasks. The system is made available to the community as a ROS module.
Resumo:
Acoustic rangerfinders are a promising technology for accurate proximity detection, a critical requirement for many emerging mobile computing applications. While state-of-the-art systems deliver robust ranging performance, the computational intensiveness of their detection mechanism expedites the energy depletion of the associated devices that are typically powered by batteries. The contribution of this article is fourfold. First, it outlines the common factors that are important for ranging. Second, it presents a review of acoustic rangers and identifies their potential problems. Third, it explores the design of an information processing framework based on sparse representation that could potentially address existing challenges, especially for mobile devices. Finally, it presents mu-BeepBeep: a low energy acoustic ranging service for mobile devices, and empirically evaluates its benefits.
Resumo:
This paper presents a novel architecture for optimizing the HTTP-based multimedia delivery in multi-user mobile networks. This proposal combines the usual client-driven dynamic adaptation scheme DASH-3GPP with network-assisted adaptation capabilities, in order to maximize the overall Quality of Experience. The foundation of this combined adaptation scheme is based on two state of the art technologies. On one hand, adaptive HTTP streaming with multi-layer encoding allows efficient media delivery and improves the experienced media quality in highly dynamic channels. Additionally, it enables the possibility to implement network-level adaptations for better coping with multi-user scenarios. On the other hand, mobile edge computing facilitates the deployment of mobile services close to the user. This approach brings new possibilities in modern and future mobile networks, such as close to zero delays and awareness of the radio status. The proposal in this paper introduces a novel element, denoted as Mobile Edge-DASH Adaptation Function, which combines all these advantages to support efficient media delivery in mobile multi-user scenarios. Furthermore, we evaluate the performance enhancements of this content- and user context-aware scheme through simulations of a mobile multimedia scenario.
Resumo:
本文应用自适应共振理论中ART-2神经网络进行移动机器人环境障碍模式识别。ART-2神经网络在处理单方向渐变的模式输入时具有模式漂移的特点,机器人在静态环境中运动依赖这种特点,但在动态环境中模式漂移的特点却会对机器人的安全造成威胁。为此,设计了一种改进的ART-2神经网络,使得移动机器人同时适应在静态和动态环境中安全运动。
Resumo:
Those living with an acquired brain injury often have issues with fatigue due to factors resulting from the injury. Cognitive impairments such as lack of memory, concentration and planning have a great impact on an individual’s ability to carry out general everyday tasks, which subsequently has the effect of inducing cognitive fatigue. Moreover, there is difficulty in assessing cognitive fatigue, as there are no real biological markers that can be measured. Rather, it is a very subjective effect that can only be diagnosed by the individual. Consequently, the traditional way of assessing cognitive fatigue is to use a self-assessment questionnaire that is able to determine contributing factors. State of the art methods to evaluate cognitive! fa tigue employ cognitive tests in order to analyse performance on predefined tasks. However, one primary issue with such tests is that they are typically carried out in a clinical environment, therefore do not have the ability to be utilized in situ within everyday life. This paper presents a smartphone application for the evaluation of fatigue, which can be used daily to track cognitive performance in order to assess the influence of fatigue.
Resumo:
When developing software for autonomous mobile robots, one has to inevitably tackle some kind of perception. Moreover, when dealing with agents that possess some level of reasoning for executing their actions, there is the need to model the environment and the robot internal state in a way that it represents the scenario in which the robot operates. Inserted in the ATRI group, part of the IEETA research unit at Aveiro University, this work uses two of the projects of the group as test bed, particularly in the scenario of robotic soccer with real robots. With the main objective of developing algorithms for sensor and information fusion that could be used e ectively on these teams, several state of the art approaches were studied, implemented and adapted to each of the robot types. Within the MSL RoboCup team CAMBADA, the main focus was the perception of ball and obstacles, with the creation of models capable of providing extended information so that the reasoning of the robot can be ever more e ective. To achieve it, several methodologies were analyzed, implemented, compared and improved. Concerning the ball, an analysis of ltering methodologies for stabilization of its position and estimation of its velocity was performed. Also, with the goal keeper in mind, work has been done to provide it with information of aerial balls. As for obstacles, a new de nition of the way they are perceived by the vision and the type of information provided was created, as well as a methodology for identifying which of the obstacles are team mates. Also, a tracking algorithm was developed, which ultimately assigned each of the obstacles a unique identi er. Associated with the improvement of the obstacles perception, a new algorithm of estimating reactive obstacle avoidance was created. In the context of the SPL RoboCup team Portuguese Team, besides the inevitable adaptation of many of the algorithms already developed for sensor and information fusion and considering that it was recently created, the objective was to create a sustainable software architecture that could be the base for future modular development. The software architecture created is based on a series of di erent processes and the means of communication among them. All processes were created or adapted for the new architecture and a base set of roles and behaviors was de ned during this work to achieve a base functional framework. In terms of perception, the main focus was to de ne a projection model and camera pose extraction that could provide information in metric coordinates. The second main objective was to adapt the CAMBADA localization algorithm to work on the NAO robots, considering all the limitations it presents when comparing to the MSL team, especially in terms of computational resources. A set of support tools were developed or improved in order to support the test and development in both teams. In general, the work developed during this thesis improved the performance of the teams during play and also the e ectiveness of the developers team when in development and test phases.
Resumo:
Mobile malwares are increasing with the growing number of Mobile users. Mobile malwares can perform several operations which lead to cybersecurity threats such as, stealing financial or personal information, installing malicious applications, sending premium SMS, creating backdoors, keylogging and crypto-ransomware attacks. Knowing the fact that there are many illegitimate Applications available on the App stores, most of the mobile users remain careless about the security of their Mobile devices and become the potential victim of these threats. Previous studies have shown that not every antivirus is capable of detecting all the threats; due to the fact that Mobile malwares use advance techniques to avoid detection. A Network-based IDS at the operator side will bring an extra layer of security to the subscribers and can detect many advanced threats by analyzing their traffic patterns. Machine Learning(ML) will provide the ability to these systems to detect unknown threats for which signatures are not yet known. This research is focused on the evaluation of Machine Learning classifiers in Network-based Intrusion detection systems for Mobile Networks. In this study, different techniques of Network-based intrusion detection with their advantages, disadvantages and state of the art in Hybrid solutions are discussed. Finally, a ML based NIDS is proposed which will work as a subsystem, to Network-based IDS deployed by Mobile Operators, that can help in detecting unknown threats and reducing false positives. In this research, several ML classifiers were implemented and evaluated. This study is focused on Android-based malwares, as Android is the most popular OS among users, hence most targeted by cyber criminals. Supervised ML algorithms based classifiers were built using the dataset which contained the labeled instances of relevant features. These features were extracted from the traffic generated by samples of several malware families and benign applications. These classifiers were able to detect malicious traffic patterns with the TPR upto 99.6% during Cross-validation test. Also, several experiments were conducted to detect unknown malware traffic and to detect false positives. These classifiers were able to detect unknown threats with the Accuracy of 97.5%. These classifiers could be integrated with current NIDS', which use signatures, statistical or knowledge-based techniques to detect malicious traffic. Technique to integrate the output from ML classifier with traditional NIDS is discussed and proposed for future work.
Resumo:
Pour respecter les droits d'auteur, la version électronique de ce mémoire à été dépouillée de ses documents visuels et audio-visuels. La version intégrale du mémoire a été déposée au Service de la gestion des documents et des archives de l'Université de Montréal.
Resumo:
Resumen basado en el de la publicaci??n
Resumo:
Resumen basado en el de la publicaci??n
Resumo:
Resumen basado en el de la publicaci??n
Resumo:
Resumen basado en el de la publicaci??n
Resumo:
Aquesta tesi està inspirada en els agents naturals per tal de planificar de manera dinàmica la navegació d'un robot diferencial de dues rodes. Les dades dels sistemes de percepció són integrades dins una graella d'ocupació de l'entorn local del robot. La planificació de les trajectòries es fa considerant la configuració desitjada del robot, així com els vértexs més significatius dels obstacles més propers. En el seguiment de les trajectòries s'utilitzen tècniques locals de control predictiu basades en el model, amb horitzons de predicció inferiors a un segon. La metodologia emprada és validada mitjançant nombrosos experiments.