979 resultados para minimalist hardware architecture


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The development of embedded control systems for a Hybrid Electric Vehicle (HEV) is a challenging task due to the multidisciplinary nature of HEV powertrain and its complex structures. Hardware-In-the-Loop (HIL) simulation provides an open and convenient environment for the modeling, prototyping, testing and analyzing HEV control systems. This thesis focuses on the development of such a HIL system for the hybrid electric vehicle study. The hardware architecture of the HIL system, including dSPACE eDrive HIL simulator, MicroAutoBox II and MotoTron Engine Control Module (ECM), is introduced. Software used in the system includes dSPACE Real-Time Interface (RTI) blockset, Automotive Simulation Models (ASM), Matlab/Simulink/Stateflow, Real-time Workshop, ControlDesk Next Generation, ModelDesk and MotoHawk/MotoTune. A case study of the development of control systems for a single shaft parallel hybrid electric vehicle is presented to summarize the functionality of this HIL system.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A highly parallel and scalable Deblocking Filter (DF) hardware architecture for H.264/AVC and SVC video codecs is presented in this paper. The proposed architecture mainly consists on a coarse grain systolic array obtained by replicating a unique and homogeneous Functional Unit (FU), in which a whole Deblocking-Filter unit is implemented. The proposal is also based on a novel macroblock-level parallelization strategy of the filtering algorithm which improves the final performance by exploiting specific data dependences. This way communication overhead is reduced and a more intensive parallelism in comparison with the existing state-of-the-art solutions is obtained. Furthermore, the architecture is completely flexible, since the level of parallelism can be changed, according to the application requirements. The design has been implemented in a Virtex-5 FPGA, and it allows filtering 4CIF (704 × 576 pixels @30 fps) video sequences in real-time at frequencies lower than 10.16 Mhz.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A specialised reconfigurable architecture is targeted at wireless base-band processing. It is built to cater for multiple wireless standards. It has lower power consumption than the processor-based solution. It can be scaled to run in parallel for processing multiple channels. Test resources are embedded on the architecture and testing strategies are included. This architecture is functionally partitioned according to the common operations found in wireless standards, such as CRC error correction, convolution and interleaving. These modules are linked via Virtual Wire Hardware modules and route-through switch matrices. Data can be processed in any order through this interconnect structure. Virtual Wire ensures the same flexibility as normal interconnects, but the area occupied and the number of switches needed is reduced. The testing algorithm scans all possible paths within the interconnection network exhaustively and searches for faults in the processing modules. The testing algorithm starts by scanning the externally addressable memory space and testing the master controller. The controller then tests every switch in the route-through switch matrix by making loops from the shared memory to each of the switches. The local switch matrix is also tested in the same way. Next the local memory is scanned. Finally, pre-defined test vectors are loaded into local memory to check the processing modules. This paper compares various base-band processing solutions. It describes the proposed platform and its implementation. It outlines the test resources and algorithm. It concludes with the mapping of Bluetooth and GSM base-band onto the platform.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We propose the design and implementation of hardware architecture for spatial prediction based image compression scheme, which consists of prediction phase and quantization phase. In prediction phase, the hierarchical tree structure obtained from the test image is used to predict every central pixel of an image by its four neighboring pixels. The prediction scheme generates an error image, to which the wavelet/sub-band coding algorithm can be applied to obtain efficient compression. The software model is tested for its performance in terms of entropy, standard deviation. The memory and silicon area constraints play a vital role in the realization of the hardware for hand-held devices. The hardware architecture is constructed for the proposed scheme, which involves the aspects of parallelism in instructions and data. The processor consists of pipelined functional units to obtain the maximum throughput and higher speed of operation. The hardware model is analyzed for performance in terms throughput, speed and power. The results of hardware model indicate that the proposed architecture is suitable for power constrained implementations with higher data rate

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A demanda crescente por poder computacional estimulou a pesquisa e desenvolvimento de processadores digitais cada vez mais densos em termos de transistores e com clock mais rápido, porém não podendo desconsiderar aspectos limitantes como consumo, dissipação de calor, complexidade fabril e valor comercial. Em outra linha de tratamento da informação, está a computação quântica, que tem como repositório elementar de armazenamento a versão quântica do bit, o q-bit ou quantum bit, guardando a superposição de dois estados, diferentemente do bit clássico, o qual registra apenas um dos estados. Simuladores quânticos, executáveis em computadores convencionais, possibilitam a execução de algoritmos quânticos mas, devido ao fato de serem produtos de software, estão sujeitos à redução de desempenho em razão do modelo computacional e limitações de memória. Esta Dissertação trata de uma versão implementável em hardware de um coprocessador para simulação de operações quânticas, utilizando uma arquitetura dedicada à aplicação, com possibilidade de explorar o paralelismo por replicação de componentes e pipeline. A arquitetura inclui uma memória de estado quântico, na qual são armazenados os estados individuais e grupais dos q-bits; uma memória de rascunho, onde serão armazenados os operadores quânticos para dois ou mais q-bits construídos em tempo de execução; uma unidade de cálculo, responsável pela execução de produtos de números complexos, base dos produtos tensoriais e matriciais necessários à execução das operações quânticas; uma unidade de medição, necessária à determinação do estado quântico da máquina; e, uma unidade de controle, que permite controlar a operação correta dos componente da via de dados, utilizando um microprograma e alguns outros componentes auxiliares.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

为了缩短深海载人潜器控制系统的开发周期,测试系统性能,根据载人潜器的自身特点,构建和实现了载人潜器所有传感器、执行器设备模拟,以及潜器在海底实景的运动状态的半物理虚拟仿真系统。首先,以仿真系统的硬件架构和数据流程为基础,重点介绍了潜器设备模拟的软件体系结构;其次,在仿真平台上测试了各种网络数据的传输延迟,分析了其整体性能;最后,得出了潜器控制器设计的时间约束。现阶段整个系统已经开发成功,并投入运行到潜器控制系统的安装调试中。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

本文设计与实现了一种基于TMS320DM642的香烟小包装外观质量检测系统,详细阐述了该系统的硬件构成、软件流程、检测算法以及针对DSP处理器进行的系统优化。系统以TMS320DM642处理器为核心建立硬件平台,通过摄像头获取香烟小包装图像,采用改进的模板匹配算法对当前图像进行质量检测,最终在监视器上显示检测结果并将检测结果送执行单元进行处理。实验结果表明基于TMS320DM642的香烟小包装检测系统,检测效果快速、准确、有效,应用前景广泛。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

本文设计与实现了一种基于TMS320DM642的车牌识别系统,详细阐述了该系统的硬件构成、软件流程、检测算法以及针对DSP处理器进行的系统优化。系统通过摄像头获取汽车牌照图像,以TMS320DM642处理器为核心建立硬件平台,完成车牌定位,倾斜角校正,字符分割,字符识别等一系列算法。实验结果表明基于TMS320DM642的车牌识别系统准确、有效,应用前景广泛。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A novel tag computation circuit for a credit based Self-Clocked Fair Queuing (SCFQ) Scheduler is presented. The scheduler combines Weighted Fair Queuing (WFQ) with a credit based bandwidth reallocation scheme. The proposed architecture is able to reallocate bandwidth on the fly if particular links suffer from channel quality degradation .The hardware architecture is parallel and pipelined enabling an aggregated throughput rate of 180 million tag computations per second. The throughput performance is ideal for Broadband Wireless Access applications, allowing room for relatively complex computations in QoS aware adaptive scheduling. The high-level system break-down is described and synthesis results for Altera Stratix II FPGA technology are presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Performance evaluation of parallel software and architectural exploration of innovative hardware support face a common challenge with emerging manycore platforms: they are limited by the slow running time and the low accuracy of software simulators. Manycore FPGA prototypes are difficult to build, but they offer great rewards. Software running on such prototypes runs orders of magnitude faster than current simulators. Moreover, researchers gain significant architectural insight during the modeling process. We use the Formic FPGA prototyping board [1], which specifically targets scalable and cost-efficient multi-board prototyping, to build and test a 64-board model of a 512-core, MicroBlaze-based, non-coherent hardware prototype with a full network-on-chip in a 3D-mesh topology. We expand the hardware architecture to include the ARM Versatile Express platforms and build a 520-core heterogeneous prototype of 8 Cortex-A9 cores and 512 MicroBlaze cores. We then develop an MPI library for the prototype and evaluate it extensively using several bare-metal and MPI benchmarks. We find that our processor prototype is highly scalable, models faithfully single-chip multicore architectures, and is a very efficient platform for parallel programming research, being 50,000 times faster than software simulation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An SVD processor system is presented in which each processing element is implemented using a simple CORDIC unit. The internal recursive loop within the CORDIC module is exploited, with pipelining being used to multiplex the two independent micro-rotations onto a single CORDIC processor. This leads to a high performance and efficient hardware architecture. In addition, a novel method for scale factor correction is presented which only need be applied once at the end of the computation. This also reduces the computation time. The net result is an SVD architecture based on a conventional CORDIC approach, which combines high performance with high silicon area efficiency.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Large integer multiplication is a major performance bottleneck in fully homomorphic encryption (FHE) schemes over the integers. In this paper two optimised multiplier architectures for large integer multiplication are proposed. The first of these is a low-latency hardware architecture of an integer-FFT multiplier. Secondly, the use of low Hamming weight (LHW) parameters is applied to create a novel hardware architecture for large integer multiplication in integer-based FHE schemes. The proposed architectures are implemented, verified and compared on the Xilinx Virtex-7 FPGA platform. Finally, the proposed implementations are employed to evaluate the large multiplication in the encryption step of FHE over the integers. The analysis shows a speed improvement factor of up to 26.2 for the low-latency design compared to the corresponding original integer-based FHE software implementation. When the proposed LHW architecture is combined with the low-latency integer-FFT accelerator to evaluate a single FHE encryption operation, the performance results show that a speed improvement by a factor of approximately 130 is possible.