992 resultados para memory access complexity
Resumo:
Desde sua inauguração em 1888 até 1978, a Hospedaria de Imigrantes de São Paulo atuou na recepção, triagem e encaminhamento de aproximadamente 3,5 milhões de trabalhadores (imigrantes e migrantes internos) para diversos setores da agricultura paulista. Parte significativa da documentação produzida ou depositada nessa Instituição é composta por suportes como: livros de registro, fichas de identificação e listas de bordo. Sobre esses incidem interesses diversos. Por um lado, são fontes que revelam informações importantes sobre a memória (coletiva) da imigração para São Paulo ao passo que, por outro, expõem informações pessoais que podem ser consideradas de foro privado ou pertinentes a outro sentido da memória.
Resumo:
In vielen Bereichen der industriellen Fertigung, wie zum Beispiel in der Automobilindustrie, wer- den digitale Versuchsmodelle (sog. digital mock-ups) eingesetzt, um die Entwicklung komplexer Maschinen m ̈oglichst gut durch Computersysteme unterstu ̈tzen zu k ̈onnen. Hierbei spielen Be- wegungsplanungsalgorithmen eine wichtige Rolle, um zu gew ̈ahrleisten, dass diese digitalen Pro- totypen auch kollisionsfrei zusammengesetzt werden k ̈onnen. In den letzten Jahrzehnten haben sich hier sampling-basierte Verfahren besonders bew ̈ahrt. Diese erzeugen eine große Anzahl von zuf ̈alligen Lagen fu ̈r das ein-/auszubauende Objekt und verwenden einen Kollisionserken- nungsmechanismus, um die einzelnen Lagen auf Gu ̈ltigkeit zu u ̈berpru ̈fen. Daher spielt die Kollisionserkennung eine wesentliche Rolle beim Design effizienter Bewegungsplanungsalgorith- men. Eine Schwierigkeit fu ̈r diese Klasse von Planern stellen sogenannte “narrow passages” dar, schmale Passagen also, die immer dort auftreten, wo die Bewegungsfreiheit der zu planenden Objekte stark eingeschr ̈ankt ist. An solchen Stellen kann es schwierig sein, eine ausreichende Anzahl von kollisionsfreien Samples zu finden. Es ist dann m ̈oglicherweise n ̈otig, ausgeklu ̈geltere Techniken einzusetzen, um eine gute Performance der Algorithmen zu erreichen.rnDie vorliegende Arbeit gliedert sich in zwei Teile: Im ersten Teil untersuchen wir parallele Kollisionserkennungsalgorithmen. Da wir auf eine Anwendung bei sampling-basierten Bewe- gungsplanern abzielen, w ̈ahlen wir hier eine Problemstellung, bei der wir stets die selben zwei Objekte, aber in einer großen Anzahl von unterschiedlichen Lagen auf Kollision testen. Wir im- plementieren und vergleichen verschiedene Verfahren, die auf Hu ̈llk ̈operhierarchien (BVHs) und hierarchische Grids als Beschleunigungsstrukturen zuru ̈ckgreifen. Alle beschriebenen Verfahren wurden auf mehreren CPU-Kernen parallelisiert. Daru ̈ber hinaus vergleichen wir verschiedene CUDA Kernels zur Durchfu ̈hrung BVH-basierter Kollisionstests auf der GPU. Neben einer un- terschiedlichen Verteilung der Arbeit auf die parallelen GPU Threads untersuchen wir hier die Auswirkung verschiedener Speicherzugriffsmuster auf die Performance der resultierenden Algo- rithmen. Weiter stellen wir eine Reihe von approximativen Kollisionstests vor, die auf den beschriebenen Verfahren basieren. Wenn eine geringere Genauigkeit der Tests tolerierbar ist, kann so eine weitere Verbesserung der Performance erzielt werden.rnIm zweiten Teil der Arbeit beschreiben wir einen von uns entworfenen parallelen, sampling- basierten Bewegungsplaner zur Behandlung hochkomplexer Probleme mit mehreren “narrow passages”. Das Verfahren arbeitet in zwei Phasen. Die grundlegende Idee ist hierbei, in der er- sten Planungsphase konzeptionell kleinere Fehler zuzulassen, um die Planungseffizienz zu erh ̈ohen und den resultierenden Pfad dann in einer zweiten Phase zu reparieren. Der hierzu in Phase I eingesetzte Planer basiert auf sogenannten Expansive Space Trees. Zus ̈atzlich haben wir den Planer mit einer Freidru ̈ckoperation ausgestattet, die es erlaubt, kleinere Kollisionen aufzul ̈osen und so die Effizienz in Bereichen mit eingeschr ̈ankter Bewegungsfreiheit zu erh ̈ohen. Optional erlaubt unsere Implementierung den Einsatz von approximativen Kollisionstests. Dies setzt die Genauigkeit der ersten Planungsphase weiter herab, fu ̈hrt aber auch zu einer weiteren Perfor- mancesteigerung. Die aus Phase I resultierenden Bewegungspfade sind dann unter Umst ̈anden nicht komplett kollisionsfrei. Um diese Pfade zu reparieren, haben wir einen neuartigen Pla- nungsalgorithmus entworfen, der lokal beschr ̈ankt auf eine kleine Umgebung um den bestehenden Pfad einen neuen, kollisionsfreien Bewegungspfad plant.rnWir haben den beschriebenen Algorithmus mit einer Klasse von neuen, schwierigen Metall- Puzzlen getestet, die zum Teil mehrere “narrow passages” aufweisen. Unseres Wissens nach ist eine Sammlung vergleichbar komplexer Benchmarks nicht ̈offentlich zug ̈anglich und wir fan- den auch keine Beschreibung von vergleichbar komplexen Benchmarks in der Motion-Planning Literatur.
Resumo:
We describe Janus, a massively parallel FPGA-based computer optimized for the simulation of spin glasses, theoretical models for the behavior of glassy materials. FPGAs (as compared to GPUs or many-core processors) provide a complementary approach to massively parallel computing. In particular, our model problem is formulated in terms of binary variables, and floating-point operations can be (almost) completely avoided. The FPGA architecture allows us to run many independent threads with almost no latencies in memory access, thus updating up to 1024 spins per cycle. We describe Janus in detail and we summarize the physics results obtained in four years of operation of this machine; we discuss two types of physics applications: long simulations on very large systems (which try to mimic and provide understanding about the experimental non equilibrium dynamics), and low-temperature equilibrium simulations using an artificial parallel tempering dynamics. The time scale of our non-equilibrium simulations spans eleven orders of magnitude (from picoseconds to a tenth of a second). On the other hand, our equilibrium simulations are unprecedented both because of the low temperatures reached and for the large systems that we have brought to equilibrium. A finite-time scaling ansatz emerges from the detailed comparison of the two sets of simulations. Janus has made it possible to perform spin glass simulations that would take several decades on more conventional architectures. The paper ends with an assessment of the potential of possible future versions of the Janus architecture, based on state-of-the-art technology.
Resumo:
Retrieving large amounts of information over wide area networks, including the Internet, is problematic due to issues arising from latency of response, lack of direct memory access to data serving resources, and fault tolerance. This paper describes a design pattern for solving the issues of handling results from queries that return large amounts of data. Typically these queries would be made by a client process across a wide area network (or Internet), with one or more middle-tiers, to a relational database residing on a remote server. The solution involves implementing a combination of data retrieval strategies, including the use of iterators for traversing data sets and providing an appropriate level of abstraction to the client, double-buffering of data subsets, multi-threaded data retrieval, and query slicing. This design has recently been implemented and incorporated into the framework of a commercial software product developed at Oracle Corporation.
Resumo:
The high performance computing community has traditionally focused uniquely on the reduction of execution time, though in the last years, the optimization of energy consumption has become a main issue. A reduction of energy usage without a degradation of performance requires the adoption of energy-efficient hardware platforms accompanied by the development of energy-aware algorithms and computational kernels. The solution of linear systems is a key operation for many scientific and engineering problems. Its relevance has motivated an important amount of work, and consequently, it is possible to find high performance solvers for a wide variety of hardware platforms. In this work, we aim to develop a high performance and energy-efficient linear system solver. In particular, we develop two solvers for a low-power CPU-GPU platform, the NVIDIA Jetson TK1. These solvers implement the Gauss-Huard algorithm yielding an efficient usage of the target hardware as well as an efficient memory access. The experimental evaluation shows that the novel proposal reports important savings in both time and energy-consumption when compared with the state-of-the-art solvers of the platform.
Resumo:
Issued also as Thesis (Ph. D.) University of Chicago, 1908.
Resumo:
A thermally activated photoluminescence memory effect, induced by a reversible order-disorder phase transition of the alkyl chains, is reported for highly organized bilayer alkyl/siloxane hybrids (see figure; left at room temperature, right at 120 degrees C). The emission energy is sensitive to the annihilation/formation of the hydrogen-bonded amide-amide array displaying a unique nanoscopic sensitivity (ca. 150 nm).
Resumo:
We report on the properties of BaBi2Ta2O9 (BBT) thin films for dynamic random-access memory (DRAM) and integrated capacitor applications. Crystalline BBT thin films were successfully fabricated by the chemical solution deposition technique on Pt-coated Si substrates at a low annealing temperature of 650°C. The films were characterized in terms of structural, dielectric, and insulating properties. The electrical measurements were conducted on Pt/BBT/Pt capacitors. The typical measured small signal dielectric constant and dissipation factor, at 100 kHz, were 282 and 0.023, respectively, for films annealed at 700°C for 60 min. The leakage current density of the films was lower than 10-9 A/cm2 at an applied electric field of 300 kV/cm. A large storage density of 38.4 fC/μm2 was obtained at an applied electric field of 200 kV/cm. The high dielectric constant, low dielectric loss and low leakage current density suggest the suitability of BBT thin films as dielectric layer for DRAM and integrated capacitor applications.
The effects of task complexity and practice on dual-task interference in visuospatial working memory
Resumo:
Although the n-back task has been widely applied to neuroimagery investigations of working memory (WM), the role of practice effects on behavioural performance of this task has not yet been investigated. The current study aimed to investigate the effects of task complexity and familiarity on the n-back task. Seventy-seven participants (39 male, 38 female) completed a visuospatial n-back task four times, twice in two testing sessions separated by a week. Participants were required to remember either the first, second or third (n-back) most recent letter positions in a continuous sequence and to indicate whether the current item matched or did not match the remembered position. A control task, with no working memory requirements required participants to match to a predetermined stimulus position. In both testing sessions, reaction time (RT) and error rate increased with increasing WM load. An exponential slope for RTs in the first session indicated dual-task interference at the 3-back level. However, a linear slope in the second session indicated a reduction of dual-task interference. Attenuation of interference in the second session suggested a reduction in executive demands of the task with practice. This suggested that practice effects occur within the n-back ask and need to be controlled for in future neuroimagery research using the task.
Resumo:
Health disparities between groups remain even after accounting for established causes such as structural and economic factors. The present research tested, for the first time, whether multiple social categorization processes can explain enhanced support for immigrant health (measured by respondents’ behavioral intention to support immigrants’ vaccination against A H1N1 disease by cutting regional public funds). Moreover, the mediating role of individualization and the moderating role of social identity complexity were tested. Findings showed that multiple versus single categorization of immigrants lead to support their right to health and confirmed the moderated mediation hypothesis. The potential in developing this sort of social cognitive intervention to address health disparities is discussed.
Resumo:
Recent empirical studies about the neurological executive nature of reading in bilinguals differ in their evaluations of the degree of selective manifestation in lexical access as implicated by data from early and late reading measures in the eye-tracking paradigm. Currently two scenarios are plausible: (1) Lexical access in reading is fundamentally language non-selective and top-down effects from semantic context can influence the degree of selectivity in lexical access; (2) Cross-lingual lexical activation is actuated via bottom-up processes without being affected by top-down effects from sentence context. In an attempt to test these hypotheses empirically, this study analyzed reader-text events arising when cognate facilitation and semantic constraint interact in a 22 factorially designed experiment tracking the eye movements of 26 Swedish-English bilinguals reading in their L2. Stimulus conditions consisted of high- and low-constraint sentences embedded with either a cognate or a non-cognate control word. The results showed clear signs of cognate facilitation in both early and late reading measures and in either sentence conditions. This evidence in favour of the non-selective hypothesis indicates that the manifestation of non-selective lexical access in reading is not constrained by top-down effects from semantic context.
Collection-Level Subject Access in Aggregations of Digital Collections: Metadata Application and Use
Resumo:
Problems in subject access to information organization systems have been under investigation for a long time. Focusing on item-level information discovery and access, researchers have identified a range of subject access problems, including quality and application of metadata, as well as the complexity of user knowledge required for successful subject exploration. While aggregations of digital collections built in the United States and abroad generate collection-level metadata of various levels of granularity and richness, no research has yet focused on the role of collection-level metadata in user interaction with these aggregations. This dissertation research sought to bridge this gap by answering the question “How does collection-level metadata mediate scholarly subject access to aggregated digital collections?” This goal was achieved using three research methods: • in-depth comparative content analysis of collection-level metadata in three large-scale aggregations of cultural heritage digital collections: Opening History, American Memory, and The European Library • transaction log analysis of user interactions, with Opening History, and • interview and observation data on academic historians interacting with two aggregations: Opening History and American Memory. It was found that subject-based resource discovery is significantly influenced by collection-level metadata richness. The richness includes such components as: 1) describing collection’s subject matter with mutually-complementary values in different metadata fields, and 2) a variety of collection properties/characteristics encoded in the free-text Description field, including types and genres of objects in a digital collection, as well as topical, geographic and temporal coverage are the most consistently represented collection characteristics in free-text Description fields. Analysis of user interactions with aggregations of digital collections yields a number of interesting findings. Item-level user interactions were found to occur more often than collection-level interactions. Collection browse is initiated more often than search, while subject browse (topical and geographic) is used most often. Majority of collection search queries fall within FRBR Group 3 categories: object, concept, and place. Significantly more object, concept, and corporate body searches and less individual person, event and class of persons searches were observed in collection searches than in item searches. While collection search is most often satisfied by Description and/or Subjects collection metadata fields, it would not retrieve a significant proportion of collection records without controlled-vocabulary subject metadata (Temporal Coverage, Geographic Coverage, Subjects, and Objects), and free-text metadata (the Description field). Observation data shows that collection metadata records in Opening History and American Memory aggregations are often viewed. Transaction log data show a high level of engagement with collection metadata records in Opening History, with the total page views for collections more than 4 times greater than item page views. Scholars observed viewing collection records valued descriptive information on provenance, collection size, types of objects, subjects, geographic coverage, and temporal coverage information. They also considered the structured display of collection metadata in Opening History more useful than the alternative approach taken by other aggregations, such as American Memory, which displays only the free-text Description field to the end-user. The results extend the understanding of the value of collection-level subject metadata, particularly free-text metadata, for the scholarly users of aggregations of digital collections. The analysis of the collection metadata created by three large-scale aggregations provides a better understanding of collection-level metadata application patterns and suggests best practices. This dissertation is also the first empirical research contribution to test the FRBR model as a conceptual and analytic framework for studying collection-level subject access.
Resumo:
In this paper the continuous Verhulst dynamic model is used to synthesize a new distributed power control algorithm (DPCA) for use in direct sequence code division multiple access (DS-CDMA) systems. The Verhulst model was initially designed to describe the population growth of biological species under food and physical space restrictions. The discretization of the corresponding differential equation is accomplished via the Euler numeric integration (ENI) method. Analytical convergence conditions for the proposed DPCA are also established. Several properties of the proposed recursive algorithm, such as Euclidean distance from optimum vector after convergence, convergence speed, normalized mean squared error (NSE), average power consumption per user, performance under dynamics channels, and implementation complexity aspects, are analyzed through simulations. The simulation results are compared with two other DPCAs: the classic algorithm derived by Foschini and Miljanic and the sigmoidal of Uykan and Koivo. Under estimated errors conditions, the proposed DPCA exhibits smaller discrepancy from the optimum power vector solution and better convergence (under fixed and adaptive convergence factor) than the classic and sigmoidal DPCAs. (C) 2010 Elsevier GmbH. All rights reserved.