969 resultados para integrated circuit
Resumo:
Plasma or "dry" etching is an essential process for the production of modern microelectronic circuits. However, despite intensive research, many aspects of the etch process are not fully understood. The results of studies of the plasma etching of Si and Si02 in fluorine-containing discharges, and the complementary technique of plasma polymerisation are presented in this thesis. Optical emission spectroscopy with argon actinometry was used as the principle plasma diagnostic. Statistical experimental design was used to model and compare Si and Si02 etch rates in CF4 and SF6 discharges as a function of flow, pressure and power. Etch mechanisms m both systems, including the potential reduction of Si etch rates in CF4 due to fluorocarbon polymer formation, are discussed. Si etch rates in CF4 /SF6 mixtures were successfully accounted for by the models produced. Si etch rates in CF4/C2F6 and CHF3 as a function of the addition of oxygen-containing additives (02, N20 and CO2) are shown to be consistent with a simple competition between F, 0 and CFx species for Si surface sites. For the range of conditions studied, Si02 etch rates were not dependent on F-atom concentration, but the presence of fluorine was essential in order to achieve significant etch rates. The influence of a wide range of electrode materials on the etch rate of Si and Si02 in CF4 and CF4 /02 plasmas was studied. It was found that the Si etch rate in a CF4 plasma was considerably enhanced, relative to an anodised aluminium electrode, in the presence of soda glass or sodium or potassium "doped" quartz. The effect was even more pronounced in a CF4 /02 discharge. In the latter system lead and copper electrodes also enhanced the Si etch rate. These results could not be accounted for by a corresponding rise in atomic fluorine concentration. Three possible etch enhancement mechanisms are discussed. Fluorocarbon polymer deposition was studied, both because of its relevance to etch mechanisms and its intrinsic interest, as a function of fluorocarbon source gas (CF4, C2F6, C3F8 and CHF3), process time, RF power and percentage hydrogen addition. Gas phase concentrations of F, H and CF2 were measured by optical emission spectroscopy, and the resultant polymer structure determined by X-ray photoelectron spectroscopy and infrared spectroscopy. Thermal and electrical properties were measured also. Hydrogen additions are shown to have a dominant role in determining deposition rate and polymer composition. A qualitative description of the polymer growth mechanism is presented which accounts for both changes in growth rate and structure, and leads to an empirical deposition rate model.
Resumo:
To tackle the challenges at circuit level and system level VLSI and embedded system design, this dissertation proposes various novel algorithms to explore the efficient solutions. At the circuit level, a new reliability-driven minimum cost Steiner routing and layer assignment scheme is proposed, and the first transceiver insertion algorithmic framework for the optical interconnect is proposed. At the system level, a reliability-driven task scheduling scheme for multiprocessor real-time embedded systems, which optimizes system energy consumption under stochastic fault occurrences, is proposed. The embedded system design is also widely used in the smart home area for improving health, wellbeing and quality of life. The proposed scheduling scheme for multiprocessor embedded systems is hence extended to handle the energy consumption scheduling issues for smart homes. The extended scheme can arrange the household appliances for operation to minimize monetary expense of a customer based on the time-varying pricing model.
Resumo:
Materials with high thermal conductivity and thermal expansion coefficient matching with that of Si or GaAs are being used for packaging high density microcircuits due to their ability of faster heat dissipation. Al/SiC is gaining wide acceptance as electronic packaging material due to the fact that its thermal expansion coefficient can be tailored to match with that of Si or GaAs by varying the Al:SiC ratio while maintaining the thermal conductivity more or less the same. In the present work, Al/SiC microwave integrated circuit (MIC) carriers have been fabricated by pressureless infiltration of Al-alloy into porous SiC preforms in air. This new technique provides a cheaper alternative to pressure infiltration or pressureless infiltration in nitrogen in producing Al/SiC composites for electronic packaging applications. Al-alloy/65vol% SiC composite exhibited a coefficient of thermal expansion of 7 x 10(-6) K-1 (25 degrees C-100 degrees C) and a thermal conductivity of 147 Wm(-1) K-1 at 30 degrees C. The hysteresis observed in thermal expansion coefficient of the composite in the temperature range 100 degrees C-400 degrees C has been attributed to the presence of thermal residual stresses in the composite. Thermal diffusivity of the composite measured over the temperature range from 30 degrees C to 400 degrees C showed a 55% decrease in thermal diffusivity with temperature. Such a large decrease in thermal diffusivity with temperature could be due to the presence of micropores, microcracks, and decohesion of the Al/SiC interfaces in the microstructure (all formed during cooling from the processing temperature). The carrier showed satisfactory performance after integrating it into a MIC.
Resumo:
The characteristics of whispering-gallery-like modes in the equilateral triangle and square microresonators are introduced, including directional emission triangle and square microlasers connected to an output waveguide. We propose a photonic interconnect scheme by connecting two directional emission microlasers with an optical waveguide on silicon integrated circuit chip. The measurement indicates that the triangle microlasers can work as a resonance enhanced photodetector for optical interconnect.
Resumo:
We have developed a novel InP-based, ridge-waveguide photonic integrated circuit (PIC), which consists of a 1.1-um wavelength Y-branch optical waveguide with low loss and improved far field pattern and a 1.3-um wavelength strained InGaAsP-InP multiple quantum-well superluminescent diode, with bundle integrated guide (BIG) as the scheme for monolithic integration. The simulations of BIG and Y-branches show low losses and improved far-field patterns, based on the beam propagation method (BPM). The amplified spontaneous emission of the device is up to 10 mW at 120 mA with no threshold and saturation. Spectral characteristics of about 30 nm width and less than I dB modulation are achieved using the built-in anti-lasing ability of Y-branch. The beam divergence angles in horizontal and vertical directions are optimized to as small as 12 degrees x8 degrees, resulting in good fiber coupling. The compactness, simplicity in fabrication, good superluminescent performance, low transmission loss and estimated low coupling loss prove the BIG and Y-branch method to be a feasible way for integration and make the photonic integrated circuit of Y-branch and superluminescent diode an promising candidate for transmitter and transceiver used in fiber optic gyroscope.
Resumo:
A monolithic silicon CMOS optoelectronic integrated circuit (OEIC) is designed and fabricated with standard 0.35 mu m CMOS technology. This OEIC circuit consists of light emitting diodes (LED), silicon dioxide waveguide, photodiodes and receiver circuit. The silicon LED operates in reverse breakdown mode and can be turned on at 8.5V 10mA. The silicon dioxide waveguide is composed of multiple layers of silicon dioxide between different metals layers. A two PN-junctions photodetector composed of n-well/p-substrate junction and p(+) active implantation/n-well junction maximizes the depletion region width. The readout circuitry in pixels is exploited to handle as small as 0.1nA photocurrent. Simulation and testing results show that the optical emissions powers are about two orders higher than the low frequency detectivity of silicon CMOS photodetcctor and receiver circuit.
Resumo:
In this paper we present a methodology and its implementation for the design and verification of programming circuit used in a family of application-specific FPGAs that share a common architecture. Each member of the family is different either in the types of functional blocks contained or in the number of blocks of each type. The parametrized design methodology is presented here to achieve this goal. Even though our focus is on the programming circuitry that provides the interface between the FPGA core circuit and the external programming hardware, the parametrized design method can be generalized to the design of entire chip for all members in the FPGA family. The method presented here covers the generation of the design RTL files and the support files for synthesis, place-and-route layout and simulations. The proposed method is proven to work smoothly within the complete chip design methodology. We will describe the implementation of this method to the design of the programming circuit in details including the design flow from the behavioral-level design to the final layout as well as the verification. Different package options and different programming modes are included in the description of the design. The circuit design implementation is based on SMIC 0.13-micron CMOS technology.
Resumo:
A novel low-power digital baseband circuit for UHF RFID tag with sensors is presented in this paper. It proposes a novel baseband architecture and a new operating scheme to fulfill the sensor functions and to reduce power consumption. It is also compatible with the EPC C1G2 UHF RFID protocol. It adopts some advanced low power techniques for system design and circuit design: adaptive clock-gating, multi-clock domain and asynchronous circuit. The baseband circuit is implemented in 0.18um 1P3M standard CMOS process. ne chip area is 0.28 mm(2) excluding test pads. Its power consumption is 25uW under 1.1V power supply.
Resumo:
The prototype wafer of a low power integrated CMOS Transmitter for short-range biotelemetry application has been designed and fabricated, which is prospective to be implanted in the human brain to transfer the extracted neural information to the external computer. The transmitter consists of five parts, a bandgap current regulator, a ring oscillator, a buffer, a modulator and a power transistor. High integration and low power are the most distinct criteria for such an implantable integrated circuit. The post-simulation results show that under a 3.3 V power supply the transmitter provides 100.1 MHz half-wave sinusoid current signal to drive the off-chip antenna, the output peak current range is -0.155 mA similar to 1.250 mA, and on-chip static power dissipation is low to 0.374 mW. All the performances of the transmitter satisfy the demands of wireless real-time BCI system for neural signals recording and processing.
Resumo:
The design and fabrication of a high speed, 12-channel monolithic integrated CMOS optoelectronic integrated circuit(OEIC) receiver are reported.Each channel of the receiver consists of a photodetector,a transimpedance amplifier,and a post-amplifier.The double photodiode structure speeds up the receiver but hinders responsivity.The adoption of active inductors in the TIA circuit extends the-3dB bandwidth to a higher level.The receiver has been realized in a CSMC 0.6μm standard CMOS process.The measured results show that a single channel of the receiver is able to work at bit rates of 0.8~1.4Gb/s. Altogether, the 12-channel OEIC receiver chip can be operated at 15Gb/s.
Resumo:
Small signal equivalent circuit model of vertical cavity surface emitting lasers (VCSEL's) is given in this paper. The modulation properties of VCSEL are simulated using this model in Pspice program. The simulation results are good agree with experiment data. Experiment is performed to testify the circuit model.
Resumo:
Silicon-on insulator (SOI) is an attractive platform for the fabrication of optoelectronic integrated circuit. Thin cladding layers (< 1.0
Resumo:
The ever increasing demand for broadband communications requires sophisticated devices. Photonic integrated circuits (PICs) are an approach that fulfills those requirements. PICs enable the integration of different optical modules on a single chip. Low loss fiber coupling and simplified packaging are key issues in keeping the price of PICs at a low level. Integrated spot size converters (SSC) offer an opportunity to accomplish this. Design, fabrication and characterization of SSCs based on an asymmetric twin waveguide (ATG) at a wavelength of 1.55 μm are the main elements of this dissertation. It is theoretically and experimentally shown that a passive ATG facilitates a polarization filter mechanism. A reproducible InP process guideline is developed that achieves vertical waveguides with smooth sidewalls. Birefringence and resonant coupling are used in an ATG to enable a polarization filtering and splitting mechanism. For the first time such a filter is experimentally shown. At a wavelength of 1610 nm a power extinction ratio of (1.6 ± 0.2) dB was measured for the TE- polarization in a single approximately 372 μm long TM- pass polarizer. A TE-pass polarizer with a similar length was demonstrated with a TM/TE-power extinction ratio of (0.7 ± 0.2) dB at 1610 nm. The refractive indices of two different InGaAsP compositions, required for a SSC, are measured by the reflection spectroscopy technique. A SSC layout for dielectric-free fabricated compact photodetectors is adjusted to those index values. The development and the results of the final fabrication procedure for the ATG concept are outlined. The etch rate, sidewall roughness and selectivity of a Cl2/CH4/H2 based inductively coupled plasma (ICP) etch are investigated by a design of experiment approach. The passivation effect of CH4 is illustrated for the first time. Conditions are determined for etching smooth and vertical sidewalls up to a depth of 5 μm.
Resumo:
The demand for optical bandwidth continues to increase year on year and is being driven primarily by entertainment services and video streaming to the home. Current photonic systems are coping with this demand by increasing data rates through faster modulation techniques, spectrally efficient transmission systems and by increasing the number of modulated optical channels per fibre strand. Such photonic systems are large and power hungry due to the high number of discrete components required in their operation. Photonic integration offers excellent potential for combining otherwise discrete system components together on a single device to provide robust, power efficient and cost effective solutions. In particular, the design of optical modulators has been an area of immense interest in recent times. Not only has research been aimed at developing modulators with faster data rates, but there has also a push towards making modulators as compact as possible. Mach-Zehnder modulators (MZM) have proven to be highly successful in many optical communication applications. However, due to the relatively weak electro-optic effect on which they are based, they remain large with typical device lengths of 4 to 7 mm while requiring a travelling wave structure for high-speed operation. Nested MZMs have been extensively used in the generation of advanced modulation formats, where multi-symbol transmission can be used to increase data rates at a given modulation frequency. Such nested structures have high losses and require both complex fabrication and packaging. In recent times, it has been shown that Electro-absorption modulators (EAMs) can be used in a specific arrangement to generate Quadrature Phase Shift Keying (QPSK) modulation. EAM based QPSK modulators have increased potential for integration and can be made significantly more compact than MZM based modulators. Such modulator designs suffer from losses in excess of 40 dB, which limits their use in practical applications. The work in this thesis has focused on how these losses can be reduced by using photonic integration. In particular, the integration of multiple lasers with the modulator structure was considered as an excellent means of reducing fibre coupling losses while maximising the optical power on chip. A significant difficultly when using multiple integrated lasers in such an arrangement was to ensure coherence between the integrated lasers. The work investigated in this thesis demonstrates for the first time how optical injection locking between discrete lasers on a single photonic integrated circuit (PIC) can be used in the generation of coherent optical signals. This was done by first considering the monolithic integration of lasers and optical couplers to form an on chip optical power splitter, before then examining the behaviour of a mutually coupled system of integrated lasers. By operating the system in a highly asymmetric coupling regime, a stable phase locking region was found between the integrated lasers. It was then shown that in this stable phase locked region the optical outputs of each laser were coherent with each other and phase locked to a common master laser.