12 resultados para integrated circuit

em CaltechTHESIS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Among the branches of astronomy, radio astronomy is unique in that it spans the largest portion of the electromagnetic spectrum, e.g., from about 10 MHz to 300 GHz. On the other hand, due to scientific priorities as well as technological limitations, radio astronomy receivers have traditionally covered only about an octave bandwidth. This approach of "one specialized receiver for one primary science goal" is, however, not only becoming too expensive for next-generation radio telescopes comprising thousands of small antennas, but also is inadequate to answer some of the scientific questions of today which require simultaneous coverage of very large bandwidths.

This thesis presents significant improvements on the state of the art of two key receiver components in pursuit of decade-bandwidth radio astronomy: 1) reflector feed antennas; 2) low-noise amplifiers on compound-semiconductor technologies. The first part of this thesis introduces the quadruple-ridged flared horn, a flexible, dual linear-polarization reflector feed antenna that achieves 5:1-7:1 frequency bandwidths while maintaining near-constant beamwidth. The horn is unique in that it is the only wideband feed antenna suitable for radio astronomy that: 1) can be designed to have nominal 10 dB beamwidth between 30 and 150 degrees; 2) requires one single-ended 50 Ohm low-noise amplifier per polarization. Design, analysis, and measurements of several quad-ridged horns are presented to demonstrate its feasibility and flexibility.

The second part of the thesis focuses on modeling and measurements of discrete high-electron mobility transistors (HEMTs) and their applications in wideband, extremely low-noise amplifiers. The transistors and microwave monolithic integrated circuit low-noise amplifiers described herein have been fabricated on two state-of-the-art HEMT processes: 1) 35 nm indium phosphide; 2) 70 nm gallium arsenide. DC and microwave performance of transistors from both processes at room and cryogenic temperatures are included, as well as first-reported measurements of detailed noise characterization of the sub-micron HEMTs at both temperatures. Design and measurements of two low-noise amplifiers covering 1--20 and 8—50 GHz fabricated on both processes are also provided, which show that the 1--20 GHz amplifier improves the state of the art in cryogenic noise and bandwidth, while the 8--50 GHz amplifier achieves noise performance only slightly worse than the best published results but does so with nearly a decade bandwidth.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We introduce an in vitro diagnostic magnetic biosensing platform for immunoassay and nucleic acid detection. The platform has key characteristics for a point-of-use (POU) diagnostic: portability, low-power consumption, low cost, and multiplexing capability. As a demonstration of capabilities, we use this platform for the room temperature, amplification-free detection of a 31 bp DNA oligomer and interferon-gamma (a protein relevant for tuberculosis diagnosis). Reliable assay measurements down to 100 pM for the DNA and 1 pM for the protein are demonstrated. We introduce a novel "magnetic freezing" technique for baseline measurement elimination and to enable spatial multiplexing. We have created a general protocol for adapting integrated circuit (IC) sensors to any of hundreds of commercially available immunoassay kits and custom designed DNA sequences.

We also introduce a method for immunotherapy treatment of malignant gliomas. We utilize leukocytes internalized with immunostimulatory nanoparticle-oligonucleotide conjugates to localize and retain immune cells near the tumor site. As a proof-of-principle, we develop a novel cell imaging and incubation chamber for in vitro magnetic motility experiments. We use the apparatus to demonstrate the controlled movement of magnetically loaded THP-1 leukocytes.

Finally, we introduce an IC transmitter and power ampli er (PA) that utilizes electronic digital infrastructure, sensors, and actuators to self-heal and adapt to process, dynamic, and environmental variation. Traditional IC design has achieved incredible degrees of reliability by ensuring that billions of transistors on a single IC die are all simultaneously functional. Reliability becomes increasingly difficult as the size of a transistor shrinks. Self-healing can mitigate these variations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Integrated circuit scaling has enabled a huge growth in processing capability, which necessitates a corresponding increase in inter-chip communication bandwidth. As bandwidth requirements for chip-to-chip interconnection scale, deficiencies of electrical channels become more apparent. Optical links present a viable alternative due to their low frequency-dependent loss and higher bandwidth density in the form of wavelength division multiplexing. As integrated photonics and bonding technologies are maturing, commercialization of hybrid-integrated optical links are becoming a reality. Increasing silicon integration leads to better performance in optical links but necessitates a corresponding co-design strategy in both electronics and photonics. In this light, holistic design of high-speed optical links with an in-depth understanding of photonics and state-of-the-art electronics brings their performance to unprecedented levels. This thesis presents developments in high-speed optical links by co-designing and co-integrating the primary elements of an optical link: receiver, transmitter, and clocking.

In the first part of this thesis a 3D-integrated CMOS/Silicon-photonic receiver will be presented. The electronic chip features a novel design that employs a low-bandwidth TIA front-end, double-sampling and equalization through dynamic offset modulation. Measured results show -14.9dBm of sensitivity and energy efficiency of 170fJ/b at 25Gb/s. The same receiver front-end is also used to implement source-synchronous 4-channel WDM-based parallel optical receiver. Quadrature ILO-based clocking is employed for synchronization and a novel frequency-tracking method that exploits the dynamics of IL in a quadrature ring oscillator to increase the effective locking range. An adaptive body-biasing circuit is designed to maintain the per-bit-energy consumption constant across wide data-rates. The prototype measurements indicate a record-low power consumption of 153fJ/b at 32Gb/s. The receiver sensitivity is measured to be -8.8dBm at 32Gb/s.

Next, on the optical transmitter side, three new techniques will be presented. First one is a differential ring modulator that breaks the optical bandwidth/quality factor trade-off known to limit the speed of high-Q ring modulators. This structure maintains a constant energy in the ring to avoid pattern-dependent power droop. As a first proof of concept, a prototype has been fabricated and measured up to 10Gb/s. The second technique is thermal stabilization of micro-ring resonator modulators through direct measurement of temperature using a monolithic PTAT temperature sensor. The measured temperature is used in a feedback loop to adjust the thermal tuner of the ring. A prototype is fabricated and a closed-loop feedback system is demonstrated to operate at 20Gb/s in the presence of temperature fluctuations. The third technique is a switched-capacitor based pre-emphasis technique designed to extend the inherently low bandwidth of carrier injection micro-ring modulators. A measured prototype of the optical transmitter achieves energy efficiency of 342fJ/bit at 10Gb/s and the wavelength stabilization circuit based on the monolithic PTAT sensor consumes 0.29mW.

Lastly, a first-order frequency synthesizer that is suitable for high-speed on-chip clock generation will be discussed. The proposed design features an architecture combining an LC quadrature VCO, two sample-and-holds, a PI, digital coarse-tuning, and rotational frequency detection for fine-tuning. In addition to an electrical reference clock, as an extra feature, the prototype chip is capable of receiving a low jitter optical reference clock generated by a high-repetition-rate mode-locked laser. The output clock at 8GHz has an integrated RMS jitter of 490fs, peak-to-peak periodic jitter of 2.06ps, and total RMS jitter of 680fs. The reference spurs are measured to be –64.3dB below the carrier frequency. At 8GHz the system consumes 2.49mW from a 1V supply.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis investigates the design and implementation of a label-free optical biosensing system utilizing a robust on-chip integrated platform. The goal has been to transition optical micro-resonator based label-free biosensing from a laborious and delicate laboratory demonstration to a tool for the analytical life scientist. This has been pursued along four avenues: (1) the design and fabrication of high-$Q$ integrated planar microdisk optical resonators in silicon nitride on silica, (2) the demonstration of a high speed optoelectronic swept frequency laser source, (3) the development and integration of a microfluidic analyte delivery system, and (4) the introduction of a novel differential measurement technique for the reduction of environmental noise.

The optical part of this system combines the results of two major recent developments in the field of optical and laser physics: the high-$Q$ optical resonator and the phase-locked electronically controlled swept-frequency semiconductor laser. The laser operates at a wavelength relevant for aqueous sensing, and replaces expensive and fragile mechanically-tuned laser sources whose frequency sweeps have limited speed, accuracy and reliability. The high-$Q$ optical resonator is part of a monolithic unit with an integrated optical waveguide, and is fabricated using standard semiconductor lithography methods. Monolithic integration makes the system significantly more robust and flexible compared to current, fragile embodiments that rely on the precarious coupling of fragile optical fibers to resonators. The silicon nitride on silica material system allows for future manifestations at shorter wavelengths. The sensor also includes an integrated microfluidic flow cell for precise and low volume delivery of analytes to the resonator surface. We demonstrate the refractive index sensing action of the system as well as the specific and nonspecific adsorption of proteins onto the resonator surface with high sensitivity. Measurement challenges due to environmental noise that hamper system performance are discussed and a differential sensing measurement is proposed, implemented, and demonstrated resulting in the restoration of a high performance sensing measurement.

The instrument developed in this work represents an adaptable and cost-effective platform capable of various sensitive, label-free measurements relevant to the study of biophysics, biomolecular interactions, cell signaling, and a wide range of other life science fields. Further development is necessary for it to be capable of binding assays, or thermodynamic and kinetics measurements; however, this work has laid the foundation for the demonstration of these applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Underlying matter and light are their building blocks of tiny atoms and photons. The ability to control and utilize matter-light interactions down to the elementary single atom and photon level at the nano-scale opens up exciting studies at the frontiers of science with applications in medicine, energy, and information technology. Of these, an intriguing front is the development of quantum networks where N >> 1 single-atom nodes are coherently linked by single photons, forming a collective quantum entity potentially capable of performing quantum computations and simulations. Here, a promising approach is to use optical cavities within the setting of cavity quantum electrodynamics (QED). However, since its first realization in 1992 by Kimble et al., current proof-of-principle experiments have involved just one or two conventional cavities. To move beyond to N >> 1 nodes, in this thesis we investigate a platform born from the marriage of cavity QED and nanophotonics, where single atoms at ~100 nm near the surfaces of lithographically fabricated dielectric photonic devices can strongly interact with single photons, on a chip. Particularly, we experimentally investigate three main types of devices: microtoroidal optical cavities, optical nanofibers, and nanophotonic crystal based structures. With a microtoroidal cavity, we realized a robust and efficient photon router where single photons are extracted from an incident coherent state of light and redirected to a separate output with high efficiency. We achieved strong single atom-photon coupling with atoms located ~100 nm near the surface of a microtoroid, which revealed important aspects in the atom dynamics and QED of these systems including atom-surface interaction effects. We present a method to achieve state-insensitive atom trapping near optical nanofibers, critical in nanophotonic systems where electromagnetic fields are tightly confined. We developed a system that fabricates high quality nanofibers with high controllability, with which we experimentally demonstrate a state-insensitive atom trap. We present initial investigations on nanophotonic crystal based structures as a platform for strong atom-photon interactions. The experimental advances and theoretical investigations carried out in this thesis provide a framework for and open the door to strong single atom-photon interactions using nanophotonics for chip-integrated quantum networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The two most important digital-system design goals today are to reduce power consumption and to increase reliability. Reductions in power consumption improve battery life in the mobile space and reductions in energy lower operating costs in the datacenter. Increased robustness and reliability shorten down time, improve yield, and are invaluable in the context of safety-critical systems. While optimizing towards these two goals is important at all design levels, optimizations at the circuit level have the furthest reaching effects; they apply to all digital systems. This dissertation presents a study of robust minimum-energy digital circuit design and analysis. It introduces new device models, metrics, and methods of calculation—all necessary first steps towards building better systems—and demonstrates how to apply these techniques. It analyzes a fabricated chip (a full-custom QDI microcontroller designed at Caltech and taped-out in 40-nm silicon) by calculating the minimum energy operating point and quantifying the chip’s robustness in the face of both timing and functional failures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dynamic rupture simulations are unique in their contributions to the study of earthquake physics. The current rapid development of dynamic rupture simulations poses several new questions: Do the simulations reflect the real world? Do the simulations have predictive power? Which one should we believe when the simulations disagree? This thesis illustrates how integration with observations can help address these questions and reduce the effects of non-uniqueness of both dynamic rupture simulations and kinematic inversion problems. Dynamic rupture simulations with observational constraints can effectively identify non-physical features inferred from observations. Moreover, the integrative technique can also provide more physical insights into the mechanisms of earthquakes. This thesis demonstrates two examples of such kinds of integration: dynamic rupture simulations of the Mw 9.0 2011 Tohoku-Oki earthquake and of earthquake ruptures in damaged fault zones:

(1) We develop simulations of the Tohoku-Oki earthquake based on a variety of observations and minimum assumptions of model parameters. The simulations provide realistic estimations of stress drop and fracture energy of the region and explain the physical mechanisms of high-frequency radiation in the deep region. We also find that the overridding subduction wedge contributes significantly to the up-dip rupture propagation and large final slip in the shallow region. Such findings are also applicable to other megathrust earthquakes.

(2) Damaged fault zones are usually found around natural faults, but their effects on earthquake ruptures have been largely unknown. We simulate earthquake ruptures in damaged fault zones with material properties constrained by seismic and geological observations. We show that reflected waves in fault zones are effective at generating pulse-like ruptures and head waves tend to accelerate and decelerate rupture speeds. These mechanisms are robust in natural fault zones with large attenuation and off-fault plasticity. Moreover, earthquakes in damaged fault zones can propagate at super-Rayleigh speeds that are unstable in homogeneous media. Supershear transitions in fault zones do not require large fault stresses. In the end, we present observations in the Big Bear region, where variability of rupture speeds of small earthquakes correlates with the laterally variable materials in a damaged fault zone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Power system is at the brink of change. Engineering needs, economic forces and environmental factors are the main drivers of this change. The vision is to build a smart electrical grid and a smarter market mechanism around it to fulfill mandates on clean energy. Looking at engineering and economic issues in isolation is no longer an option today; it needs an integrated design approach. In this thesis, I shall revisit some of the classical questions on the engineering operation of power systems that deals with the nonconvexity of power flow equations. Then I shall explore some issues of the interaction of these power flow equations on the electricity markets to address the fundamental issue of market power in a deregulated market environment. Finally, motivated by the emergence of new storage technologies, I present an interesting result on the investment decision problem of placing storage over a power network. The goal of this study is to demonstrate that modern optimization and game theory can provide unique insights into this complex system. Some of the ideas carry over to applications beyond power systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first part of this work describes the uses of aperiodic structures in optics and integrated optics. In particular, devices are designed, fabricated, tested and analyzed which make use of a chirped grating corrugation on the surface of a dielectric waveguide. These structures can be used as input-output couplers, multiplexers and demultiplexers, and broad band filters.

Next, a theoretical analysis is made of the effects of a random statistical variation in the thicknesses of layers in a dielectric mirror on its reflectivity properties. Unlike the intentional aperiodicity introduced in the chirped gratings, the aperiodicity in the Bragg reflector mirrors is unintentional and is present to some extent in all devices made. The analysis involved in studying these problems relies heavily on the coupled mode formalism. The results are compared with computer experiments, as well as tests of actual mirrors.

The second part of this work describes a novel method for confining light in the transverse direction in an injection laser. These so-called transverse Bragg reflector lasers confine light normal to the junction plane in the active region, through reflection from an adjacent layered medium. Thus, in principle, it is possible to guide light in a dielectric layer whose index is lower than that of the surrounding material. The design, theory and testing of these diode lasers are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Researchers have spent decades refining and improving their methods for fabricating smaller, finer-tuned, higher-quality nanoscale optical elements with the goal of making more sensitive and accurate measurements of the world around them using optics. Quantum optics has been a well-established tool of choice in making these increasingly sensitive measurements which have repeatedly pushed the limits on the accuracy of measurement set forth by quantum mechanics. A recent development in quantum optics has been a creative integration of robust, high-quality, and well-established macroscopic experimental systems with highly-engineerable on-chip nanoscale oscillators fabricated in cleanrooms. However, merging large systems with nanoscale oscillators often require them to have extremely high aspect-ratios, which make them extremely delicate and difficult to fabricate with an "experimentally reasonable" repeatability, yield and high quality. In this work we give an overview of our research, which focused on microscopic oscillators which are coupled with macroscopic optical cavities towards the goal of cooling them to their motional ground state in room temperature environments. The quality factor of a mechanical resonator is an important figure of merit for various sensing applications and observing quantum behavior. We demonstrated a technique for pushing the quality factor of a micromechanical resonator beyond conventional material and fabrication limits by using an optical field to stiffen and trap a particular motional mode of a nanoscale oscillator. Optical forces increase the oscillation frequency by storing most of the mechanical energy in a nearly loss-less optical potential, thereby strongly diluting the effects of material dissipation. By placing a 130 nm thick SiO2 pendulum in an optical standing wave, we achieve an increase in the pendulum center-of-mass frequency from 6.2 to 145 kHz. The corresponding quality factor increases 50-fold from its intrinsic value to a final value of Qm = 5.8(1.1) x 105, representing more than an order of magnitude improvement over the conventional limits of SiO2 for a pendulum geometry. Our technique may enable new opportunities for mechanical sensing and facilitate observations of quantum behavior in this class of mechanical systems. We then give a detailed overview of the techniques used to produce high-aspect-ratio nanostructures with applications in a wide range of quantum optics experiments. The ability to fabricate such nanodevices with high precision opens the door to a vast array of experiments which integrate macroscopic optical setups with lithographically engineered nanodevices. Coupled with atom-trapping experiments in the Kimble Lab, we use these techniques to realize a new waveguide chip designed to address ultra-cold atoms along lithographically patterned nanobeams which have large atom-photon coupling and near 4π Steradian optical access for cooling and trapping atoms. We describe a fully integrated and scalable design where cold atoms are spatially overlapped with the nanostring cavities in order to observe a resonant optical depth of d0 ≈ 0.15. The nanodevice illuminates new possibilities for integrating atoms into photonic circuits and engineering quantum states of atoms and light on a microscopic scale. We then describe our work with superconducting microwave resonators coupled to a phononic cavity towards the goal of building an integrated device for quantum-limited microwave-to-optical wavelength conversion. We give an overview of our characterizations of several types of substrates for fabricating a low-loss high-frequency electromechanical system. We describe our electromechanical system fabricated on a Si3N4 membrane which consists of a 12 GHz superconducting LC resonator coupled capacitively to the high frequency localized modes of a phononic nanobeam. Using our suspended membrane geometry we isolate our system from substrates with significant loss tangents, drastically reducing the parasitic capacitance of our superconducting circuit to ≈ 2.5$ fF. This opens up a number of possibilities in making a new class of low-loss high-frequency electromechanics with relatively large electromechanical coupling. We present our substrate studies, fabrication methods, and device characterization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An exciting frontier in quantum information science is the integration of otherwise "simple'' quantum elements into complex quantum networks. The laboratory realization of even small quantum networks enables the exploration of physical systems that have not heretofore existed in the natural world. Within this context, there is active research to achieve nanoscale quantum optical circuits, for which atoms are trapped near nano-scopic dielectric structures and "wired'' together by photons propagating through the circuit elements. Single atoms and atomic ensembles endow quantum functionality for otherwise linear optical circuits and thereby enable the capability of building quantum networks component by component. Toward these goals, we have experimentally investigated three different systems, from conventional to rather exotic systems : free-space atomic ensembles, optical nano fibers, and photonics crystal waveguides. First, we demonstrate measurement-induced quadripartite entanglement among four quantum memories. Next, following the landmark realization of a nanofiber trap, we demonstrate the implementation of a state-insensitive, compensated nanofiber trap. Finally, we reach more exotic systems based on photonics crystal devices. Beyond conventional topologies of resonators and waveguides, new opportunities emerge from the powerful capabilities of dispersion and modal engineering in photonic crystal waveguides. We have implemented an integrated optical circuit with a photonics crystal waveguide capable of both trapping and interfacing atoms with guided photons, and have observed the collective effect, superradiance, mediated by the guided photons. These advances provide an important capability for engineered light-matter interactions, enabling explorations of novel quantum transport and quantum many-body phenomena.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Part I

The physical phenomena which will ultimately limit the packing density of planar bipolar and MOS integrated circuits are examined. The maximum packing density is obtained by minimizing the supply voltage and the size of the devices. The minimum size of a bipolar transistor is determined by junction breakdown, punch-through and doping fluctuations. The minimum size of a MOS transistor is determined by gate oxide breakdown and drain-source punch-through. The packing density of fully active bipolar or static non-complementary MOS circuits becomes limited by power dissipation. The packing density of circuits which are not fully active such as read-only memories, becomes limited by the area occupied by the devices, and the frequency is limited by the circuit time constants and by metal migration. The packing density of fully active dynamic or complementary MOS circuits is limited by the area occupied by the devices, and the frequency is limited by power dissipation and metal migration. It is concluded that read-only memories will reach approximately the same performance and packing density with MOS and bipolar technologies, while fully active circuits will reach the highest levels of integration with dynamic MOS or complementary MOS technologies.

Part II

Because the Schottky diode is a one-carrier device, it has both advantages and disadvantages with respect to the junction diode which is a two-carrier device. The advantage is that there are practically no excess minority carriers which must be swept out before the diode blocks current in the reverse direction, i.e. a much faster recovery time. The disadvantage of the Schottky diode is that for a high voltage device it is not possible to use conductivity modulation as in the p i n diode; since charge carriers are of one sign, no charge cancellation can occur and current becomes space charge limited. The Schottky diode design is developed in Section 2 and the characteristics of an optimally designed silicon Schottky diode are summarized in Fig. 9. Design criteria and quantitative comparison of junction and Schottky diodes is given in Table 1 and Fig. 10. Although somewhat approximate, the treatment allows a systematic quantitative comparison of the devices for any given application.

Part III

We interpret measurements of permittivity of perovskite strontium titanate as a function of orientation, temperature, electric field and frequency performed by Dr. Richard Neville. The free energy of the crystal is calculated as a function of polarization. The Curie-Weiss law and the LST relation are verified. A generalized LST relation is used to calculate the permittivity of strontium titanate from zero to optic frequencies. Two active optic modes are important. The lower frequency mode is attributed mainly to motion of the strontium ions with respect to the rest of the lattice, while the higher frequency active mode is attributed to motion of the titanium ions with respect to the oxygen lattice. An anomalous resonance which multi-domain strontium titanate crystals exhibit below 65°K is described and a plausible mechanism which explains the phenomenon is presented.