53 resultados para haitalliset aineet
Resumo:
Various endogenous and exogenous factors have been reported to increase the risk of breast cancer. Many of those are related to prolonged lifetime exposure to estrogens. Furthermore, a positive family history of breast cancer and certain benign breast diseases are known to increase the risk of breast cancer. The role of lifestyle factors, such as use of alcohol and smoking has been an area of intensive study. Alcohol has been found to increase the risk of breast cancer, whereas the role of smoking has remained obscure. A multitude of enzymes are involved in the metabolism of estrogens and xenobiotics including the carcinogens found in tobacco smoke. Many of the metabolic enzymes exhibit genetic polymorphisms that can lead to inter-individual differences in their abilities to modify hazardous substrates. Therefore, in presence of a given chemical exposure, one subgroup of women may be more susceptible to breast carcinogenesis, since they carry unfavourable forms of the polymorphic genes involved in the metabolism of the chemical. In this work, polymorphic genes encoding for cytochrome P450 (CYP) 1A1 and 1B1, N-acetyl transferase 2 (NAT2), sulfotransferase 1A1 (SULT1A1), manganese superoxide dismutase (MnSOD) and vitamin D receptor (VDR) were investigated in relation to breast cancer susceptibility in a Finnish population. CYP1A1, CYP1B1 and SULT1A1 are involved in the metabolism of both estrogens and xenobiotics, whereas NAT2 is involved only in the latter. MnSOD is an antioxidant enzyme protecting cells from oxidative damage. VDR, in turn, mediates the effects of the active form of vitamin D (1,25(OH)2D3, calcitriol) on maintenance of calcium homeostasis and it has anti-proliferative effects in many cancer cells. A 1.3-fold (95% CIs 1.01-1.73) increased risk of breast cancer was seen among women who carried the NAT2 slow acetylator genotype and a 1.5-fold (95% CI 1.1-2.0) risk was found in women with a MnSOD variant A allele containing genotypes compared to women with the NAT2 rapid acetylator genotype or to those with the MnSOD VV genotype, respectively. Instead, women with the VDR a allele containing genotypes were found to be at a decreased risk for breast cancer (OR 0.73; 95% CI 0.54-0.98) compared to women with the AA genotype. No significant overall associations were found between SULT1A1 or CYP genotypes and breast cancer risk, whereas a combination of the CYP1B1 432Val allele containing genotypes with the NAT2 slow acetylator genotypes posed a 1.5-fold (95% CI 1.03-2.24) increased risk. Moreover, NAT2 slow acetylator genotype was found to be confined to women with an advanced stage of breast cancer (stages III and IV). Further evidence for the association of xenobiotic metabolising genes with breast cancer risk was found when active smoking was taken into account. Women who smoked less than 10 cigarettes/day and carried at least one CYP1B1 432Val variant allele, were at 3.1-fold (95% CI 1.32-7.12) risk of breast cancer compared to women who smoked the same amount but did not carry the variant allele. Furthermore, the risk was significantly increased with increasing number of the CYP1B1 432Val alleles (p for trend 0.005). In addition, women who smoked less than 5 pack-years and carried the NAT2 slow acetylator genotype were at a 2.6-fold (95% CI 1.01-6.48) increased risk of breast cancer compared to women who smoked the same amount but carried the NAT2 rapid acetylator genotype. Furthermore, the combination of the CYP1B1 432Val allele and the NAT2 slow acetylator genotype increased the risk of breast cancer by 2.5-fold (95% CI 1.11-5.45) among ever smokers. Instead, the MnSOD A allele was found to be a risk factor among postmenopausal long-term smokers (>15 years of smoking) (OR 5.1; 95% CI 1.4-18.4) or among postmenopausal women who had smoked more than 10 cigarettes/day (OR 5.5; 95% CI 1.3-23.4) compared to women who had similar smoking habits but carried the MnSOD V/V genotype. Similarly, within subgroups of postmenopausal women who were using oral contraceptives, hormone replacement therapy or alcohol, women carrying the MnSOD A allele genotypes seemed to be at increased risk of breast cancer compared to women with the MnSOD V/V genotype. A positive family history of breast cancer and high parity were shown to be inversely associated with breast cancer risk among women carrying the VDR ApaI a allele or among premenopausal women carrying the SULT1A1*2 allele, respectively.
Resumo:
F4 fimbriae of enterotoxigenic Escherichia coli (ETEC) are highly stable multimeric structures with a capacity to evoke mucosal immune responses. With these characters F4 offer a unique model system to study oral vaccination against ETEC-induced porcine postweaning diarrhea. Postweaning diarrhea is a major problem in piggeries worldwide and results in significant economic losses. No vaccine is currently available to protect weaned piglets against ETEC infections. Transgenic plants provide an economically feasible platform for large-scale production of vaccine antigens for animal health. In this study, the capacity of transgenic plants to produce FaeG protein, the major structural subunit and adhesin of F4 fimbria, was evaluated. Using the model plant tobacco, the optimal subcellular location for FaeG accumulation was examined. Targeting of FaeG into chloroplasts offered a superior accumulation level of 1% of total soluble proteins (TSP) over the other investigated subcellular locations, namely, the endoplasmic reticulum and the apoplast. Moreover, we determined whether the FaeG protein, when isolated from its fimbrial background and produced in a plant cell, would retain the key properties of an oral vaccine, i.e. stability in gastrointestinal conditions, binding to porcine intestinal F4 receptors (F4R), and inhibition of the F4-possessing (F4+) ETEC attachment to F4R. The chloroplast-derived FaeG protein did show resistance against low pH and proteolysis in the simulated gastrointestinal conditions and was able to bind to the F4R, subsequently inhibiting the F4+ ETEC binding in a dose-dependent manner. To investigate the oral immunogenicity of FaeG protein, the edible crop plant alfalfa was transformed with the chloroplast-targeting construct and equally to tobacco plants, a high-yield FaeG accumulation of 1% of TSP was obtained. A similar yield was also obtained in the seeds of barley, a valuable crop plant, when the FaeG-encoding gene was expressed under an endosperm-specific promoter and subcellularly targeted into the endoplasmic reticulum. Furthermore, desiccated alfalfa plants and barley grains were shown to have a capacity to store FaeG protein in a stable form for years. When the transgenic alfalfa plants were administred orally to weaned piglets, slight F4-specific systemic and mucosal immune responses were induced. Co-administration of the transgenic alfalfa and the mucosal adjuvant cholera toxin enhanced the F4-specific immune response; the duration and number of F4+ E. coli excretion following F4+ ETEC challenge were significantly reduced as compared with pigs that had received nontransgenic plant material. In conclusion, the results suggest that transgenic plants producing the FaeG subunit protein could be used for production and delivery of oral vaccines against porcine F4+ ETEC infections. The findings here thus present new approaches to develop the vaccination strategy against porcine postweaning diarrhea.
Resumo:
Human parvovirus B19 is a minute ssDNA virus causing a wide variety of diseases, including erythema infectiosum, arthropathy, anemias, and fetal death. After primary infection, genomic DNA of B19 has been shown to persist in solid tissues of not only symptomatic but also of constitutionally healthy, immunocompetent individuals. In this thesis, the viral DNA was shown to persist as an apparently intact molecule of full length, and without persistence-specific mutations. Thus, although the mere presence of B19 DNA in tissue can not be used as a diagnostic criterion, a possible role in the pathogenesis of diseases e.g. through mRNA or protein production can not be excluded. The molecular mechanism, the host-cell type and the possible clinical significance of B19 DNA tissue persistence are yet to be elucidated. In the beginning of this work, the B19 genomic sequence was considered highly conserved. However, new variants were found: V9 was detected in 1998 in France, in serum of a child with aplastic crisis. This variant differed from the prototypic B19 sequences by ~10 %. In 2002 we found, persisting in skin of constitutionally healthy humans, DNA of another novel B19 variant, LaLi. Genetically this variant differed from both the prototypic sequences and the variant V9 also by ~10%. Simultaneously, B19 isolates with DNA sequences similar to LaLi were introduced by two other groups, in the USA and France. Based on phylogeny, a classification scheme based on three genotypes (B19 types 1-3) was proposed. Although the B19 virus is mainly transmitted via the respiratory route, blood and plasma-derived products contaminated with high levels of B19 DNA have also been shown to be infectious. The European Pharmacopoeia stipulates that, in Europe, from the beginning of 2004, plasma pools for manufacture must contain less than 104 IU/ml of B19 DNA. Quantitative PCR screening is therefore a prerequisite for restriction of the B19 DNA load and obtaining of safe plasma products. Due to the DNA sequence variation among the three B19 genotypes, however, B19 PCR methods might fail to detect the new variants. We therefore examined the suitability of the two commercially available quantitative B19 PCR tests, LightCycler-Parvovirus B19 quantification kit (Roche Diagnostics) and RealArt Parvo B19 LC PCR (Artus), for detection, quantification and differentiation of the three B19 types known, including B19 types 2 and 3. The former method was highly sensitive for detection of the B19 prototype but was not suitable for detection of types 2 and 3. The latter method detected and differentiated all three B19 virus types. However, one of the two type-3 strains was detected at a lower sensitivity. Then, we assessed the prevalence of the three B19 virus types among Finnish blood donors, by screening pooled plasma samples derived from >140 000 blood-donor units: none of the pools contained detectable levels of B19 virus types 2 or 3. According to the results of other groups, B19 type 2 was absent also among Danish blood-donors, and extremely rare among symptomatic European patients. B19 type 3 has been encountered endemically in Ghana and (apparently) in Brazil, and sporadical cases have been detected in France and the UK. We next examined the biological characteristics of these virus types. The p6 promoter regions of virus types 1-3 were cloned in front of a reporter gene, the constructs were transfected into different cell lines, and the promoter activities were measured. As a result, we found that the activities of the three p6 promoters, although differing in sequence by >20%, were of equal strength, and most active in B19-permissive cells. Furthermore, the infectivity of the three B19 types was examined in two B19-permissive cell lines. RT-PCR revealed synthesis of spliced B19 mRNAs, and immunofluorescence verified the production of NS1 and VP proteins in the infected cells. These experiments suggested similar host-cell tropism and showed that the three virus types are strains of the same species, i.e. human parvovirus B19. Last but not least, the sera from subjects infected in the past either with B19 type 1 or type 2 (as evidenced by tissue persistence of the respective DNAs), revealed in VP1/2- and VP2-EIAs a 100 % cross-reactivity between virus types 1 and 2. These results, together with similar studies by others, indicate that the three B19 genotypes constitute a single serotype.
Resumo:
Eutrophication favours harmful algal blooms worldwide. The blooms cause toxic outbreaks and deteriorated recreational and aesthetic values, causing both economic loss and illness or death of humans and animals. The Baltic Sea is the world s only large brackish water habitat with recurrent blooms of toxic cyanobacteria capable of biological fixation of atmospheric nitrogen gas. Phosphorus is assumed to be the main limiting factor, along with temperature and light, for the growth of these cyanobacteria. This thesis evaluated the role of phosphorus nutrition as a regulating factor for the occurrence of nitrogen-fixing cyanobacteria blooms in the Baltic Sea, utilising experimental laboratory and field studies and surveys on varying spatial scales. Cellular phosphorus sources were found to be able to support substantial growth of the two main bloom forming species Aphanizomenon sp. and Nodularia spumigena. However, N. spumigena growth seemed independent of phosphorus source, whereas, Aphanizomenon sp. grew best in a phosphate enriched environment. Apparent discrepancies with field observations and experiments are explained by the typical seasonal temperature dependent development of Aphanizomenon sp. and N. spumigena biomass allowing the two species to store ambient pre-bloom excess phosphorus in different ways. Field experiments revealed natural cyanobacteria bloom communities to be predominantly phosphorus deficient during blooms. Phosphate additions were found to increase the accumulation of phosphorus relatively most in the planktonic size fraction dominated by the nitrogen-fixing cyanobacteria. Aphanizomenon sp. responded to phosphate additions whereas the phosphorus nutritive status of N. spumigena seemed independent of phosphate addition. The seasonal development of phosphorus deficiency is different for the two species with N. spumigena showing indications of phosphorus deficiency during a longer time period in the open sea. Coastal upwelling introduces phosphorus to the surface layer during nutrient deficient conditions in summer. The species-specific ability of Aphanizomenon sp. and N. spumigena to utilise phosphate enrichment of the surface layer caused by coastal upwelling was clarified. Typical bloom time vertical distributions of biomass maxima were found to render N. spumigena more susceptible to advection by surface currents caused by coastal upwellings. Aphanizomenon sp. populations residing in the seasonal thermocline were observed to be able to utilise the phosphate enrichment and a bloom was produced with a two to three week time lag subsequent to the relaxation of upwelling. Consistent high concentrations of dissolved inorganic phosphorus, caused by persistent internal loading of phosphorus, was found to be the main source of phosphorus for large-scale pelagic blooms. External loads were estimated to contribute with only a fraction of available phosphorus for open sea blooms. Remineralization of organic forms of phosphorus along with vertical mixing to the permanent halocline during winter set the level of available phosphorus for the next growth season. Events such as upwelling are important in replenishing phosphate concentrations during the nutrient deplete growth season. Autecological characteristics of the two main bloom forming species favour Aphanizomenon sp. populations in utilising the abundant excess phosphate concentrations and phosphate pulses mediated through upwelling. Whilst, N. spumigena displays predominant phosphorus limited growth mode and relies on more scarce cellular phosphorus stores and presumably dissolved organic phosphorus compounds for growth. The Baltic Sea is hypothesised to be in an inhibited state of recovery due to the extensive historical external nutrient loading, extensive internal phosphorus loading and the substantial nitrogen load caused by cyanobacteria nitrogen fixation. This state of the sea is characterised as a vicious circle .
Resumo:
Industrial ecology is an important field of sustainability science. It can be applied to study environmental problems in a policy relevant manner. Industrial ecology uses ecosystem analogy; it aims at closing the loop of materials and substances and at the same time reducing resource consumption and environmental emissions. Emissions from human activities are related to human interference in material cycles. Carbon (C), nitrogen (N) and phosphorus (P) are essential elements for all living organisms, but in excess have negative environmental impacts, such as climate change (CO2, CH4 N2O), acidification (NOx) and eutrophication (N, P). Several indirect macro-level drivers affect emissions change. Population and affluence (GDP/capita) often act as upward drivers for emissions. Technology, as emissions per service used, and consumption, as economic intensity of use, may act as drivers resulting in a reduction in emissions. In addition, the development of country-specific emissions is affected by international trade. The aim of this study was to analyse changes in emissions as affected by macro-level drivers in different European case studies. ImPACT decomposition analysis (IPAT identity) was applied as a method in papers I III. The macro-level perspective was applied to evaluate CO2 emission reduction targets (paper II) and the sharing of greenhouse gas emission reduction targets (paper IV) in the European Union (EU27) up to the year 2020. Data for the study were mainly gathered from official statistics. In all cases, the results were discussed from an environmental policy perspective. The development of nitrogen oxide (NOx) emissions was analysed in the Finnish energy sector during a long time period, 1950 2003 (paper I). Finnish emissions of NOx began to decrease in the 1980s as the progress in technology in terms of NOx/energy curbed the impact of the growth in affluence and population. Carbon dioxide (CO2) emissions related to energy use during 1993 2004 (paper II) were analysed by country and region within the European Union. Considering energy-based CO2 emissions in the European Union, dematerialization and decarbonisation did occur, but not sufficiently to offset population growth and the rapidly increasing affluence during 1993 2004. The development of nitrogen and phosphorus load from aquaculture in relation to salmonid consumption in Finland during 1980 2007 was examined, including international trade in the analysis (paper III). A regional environmental issue, eutrophication of the Baltic Sea, and a marginal, yet locally important source of nutrients was used as a case. Nutrient emissions from Finnish aquaculture decreased from the 1990s onwards: although population, affluence and salmonid consumption steadily increased, aquaculture technology improved and the relative share of imported salmonids increased. According to the sustainability challenge in industrial ecology, the environmental impact of the growing population size and affluence should be compensated by improvements in technology (emissions/service used) and with dematerialisation. In the studied cases, the emission intensity of energy production could be lowered for NOx by cleaning the exhaust gases. Reorganization of the structure of energy production as well as technological innovations will be essential in lowering the emissions of both CO2 and NOx. Regarding the intensity of energy use, making the combustion of fuels more efficient and reducing energy use are essential. In reducing nutrient emissions from Finnish aquaculture to the Baltic Sea (paper III) through technology, limits of biological and physical properties of cultured fish, among others, will eventually be faced. Regarding consumption, salmonids are preferred to many other protein sources. Regarding trade, increasing the proportion of imports will outsource the impacts. Besides improving technology and dematerialization, other viewpoints may also be needed. Reducing the total amount of nutrients cycling in energy systems and eventually contributing to NOx emissions needs to be emphasized. Considering aquaculture emissions, nutrient cycles can be partly closed through using local fish as feed replacing imported feed. In particular, the reduction of CO2 emissions in the future is a very challenging task when considering the necessary rates of dematerialisation and decarbonisation (paper II). Climate change mitigation may have to focus on other greenhouse gases than CO2 and on the potential role of biomass as a carbon sink, among others. The global population is growing and scaling up the environmental impact. Population issues and growing affluence must be considered when discussing emission reductions. Climate policy has only very recently had an influence on emissions, and strong actions are now called for climate change mitigation. Environmental policies in general must cover all the regions related to production and impacts in order to avoid outsourcing of emissions and leakage effects. The macro-level drivers affecting changes in emissions can be identified with the ImPACT framework. Statistics for generally known macro-indicators are currently relatively well available for different countries, and the method is transparent. In the papers included in this study, a similar method was successfully applied in different types of case studies. Using transparent macro-level figures and a simple top-down approach are also appropriate in evaluating and setting international emission reduction targets, as demonstrated in papers II and IV. The projected rates of population and affluence growth are especially worth consideration in setting targets. However, sensitivities in calculations must be carefully acknowledged. In the basic form of the ImPACT model, the economic intensity of consumption and emission intensity of use are included. In seeking to examine consumption but also international trade in more detail, imports were included in paper III. This example demonstrates well how outsourcing of production influences domestic emissions. Country-specific production-based emissions have often been used in similar decomposition analyses. Nevertheless, trade-related issues must not be ignored.
Resumo:
With transplant rejection rendered a minor concern and survival rates after liver transplantation (LT) steadily improving, long-term complications are attracting more attention. Current immunosuppressive therapies, together with other factors, are accompanied by considerable long-term toxicity, which clinically manifests as renal dysfunction, high risk for cardiovascular disease, and cancer. This thesis investigates the incidence, causes, and risk factors for such renal dysfunction, cardiovascular risk, and cancer after LT. Long-term effects of LT are further addressed by surveying the quality of life and employment status of LT recipients. The consecutive patients included had undergone LT at Helsinki University Hospital from 1982 onwards. Data regarding renal function – creatinine and estimated glomerular filtration rate (GFR) – were recorded before and repeatedly after LT in 396 patients. The presence of hypertension, dyslipidemia, diabetes, impaired fasting glucose, and overweight/obesity before and 5 years after LT was determined among 77 patients transplanted for acute liver failure. The entire cohort of LT patients (540 patients), including both children and adults, was linked with the Finnish Cancer Registry, and numbers of cancers observed were compared to site-specific expected numbers based on national cancer incidence rates stratified by age, gender, and calendar time. Health-related quality of life (HRQoL), measured by the 15D instrument, and employment status were surveyed among all adult patients alive in 2007 (401 patients). The response rate was 89%. Posttransplant cardiovascular risk factor prevalence and HRQoL were compared with that in the age- and gender-matched Finnish general population. The cumulative risk for chronic kidney disease increased from 10% at 5 years to 16% at 10 years following LT. GFR up to 10 years after LT could be predicted by the GFR at 1 year. In patients transplanted for chronic liver disease, a moderate correlation of pretransplant GFR with later GFR was also evident, whereas in acute liver failure patients after LT, even severe pretransplant renal dysfunction often recovered. By 5 years after LT, 71% of acute liver failure patients were receiving antihypertensive medications, 61% were exhibiting dyslipidemia, 10% were diabetic, 32% were overweight, and 13% obese. Compared with the general population, only hypertension displayed a significantly elevated prevalence among patients – 2.7-fold – whereas patients exhibited 30% less dyslipidemia and 71% less impaired fasting glucose. The cumulative incidence of cancer was 5% at 5 years and 13% at 10. Compared with the general population, patients were subject to a 2.6-fold cancer risk, with non-melanoma skin cancer (standardized incidence ratio, SIR, 38.5) and non-Hodgkin lymphoma (SIR 13.9) being the predominant malignancies. Non-Hodgkin lymphoma was associated with male gender, young age, and the immediate posttransplant period, whereas old age and antibody induction therapy raised skin-cancer risk. HRQoL deviated clinically unimportantly from the values in the general population, but significant deficits among patients were evident in some physical domains. HRQoL did not seem to decrease with longer follow-up. Although 87% of patients reported improved working capacity, data on return to working life showed marked age-dependency: Among patients aged less than 40 at LT, 70 to 80% returned to work, among those aged 40 to 50, 55%, and among those above 50, 15% to 28%. The most common cause for unemployment was early retirement before LT. Those patients employed exhibited better HRQoL than those unemployed. In conclusion, although renal impairment, hypertension, and cancer are evidently common after LT and increase with time, patients’ quality of life remains comparable with that of the general population.
Resumo:
Placental abruption, one of the most significant causes of perinatal mortality and maternal morbidity, occurs in 0.5-1% of pregnancies. Its etiology is unknown, but defective trophoblastic invasion of the spiral arteries and consequent poor vascularization may play a role. The aim of this study was to define the prepregnancy risk factors of placental abruption, to define the risk factors during the index pregnancy, and to describe the clinical presentation of placental abruption. We also wanted to find a biochemical marker for predicting placental abruption early in pregnancy. Among women delivering at the University Hospital of Helsinki in 1997-2001 (n=46,742), 198 women with placental abruption and 396 control women were identified. The overall incidence of placental abruption was 0.42%. The prepregnancy risk factors were smoking (OR 1.7; 95% CI 1.1, 2.7), uterine malformation (OR 8.1; 1.7, 40), previous cesarean section (OR 1.7; 1.1, 2.8), and history of placental abruption (OR 4.5; 1.1, 18). The risk factors during the index pregnancy were maternal (adjusted OR 1.8; 95% CI 1.1, 2.9) and paternal smoking (2.2; 1.3, 3.6), use of alcohol (2.2; 1.1, 4.4), placenta previa (5.7; 1.4, 23.1), preeclampsia (2.7; 1.3, 5.6) and chorioamnionitis (3.3; 1.0, 10.0). Vaginal bleeding (70%), abdominal pain (51%), bloody amniotic fluid (50%) and fetal heart rate abnormalities (69%) were the most common clinical manifestations of placental abruption. Retroplacental blood clot was seen by ultrasound in 15% of the cases. Neither bleeding nor pain was present in 19% of the cases. Overall, 59% went into preterm labor (OR 12.9; 95% CI 8.3, 19.8), and 91% were delivered by cesarean section (34.7; 20.0, 60.1). Of the newborns, 25% were growth restricted. The perinatal mortality rate was 9.2% (OR 10.1; 95% CI 3.4, 30.1). We then tested selected biochemical markers for prediction of placental abruption. The median of the maternal serum alpha-fetoprotein (MSAFP) multiples of median (MoM) (1.21) was significantly higher in the abruption group (n=57) than in the control group (n=108) (1.07) (p=0.004) at 15-16 gestational weeks. In multivariate analysis, elevated MSAFP remained as an independent risk factor for placental abruption, adjusting for parity ≥ 3, smoking, previous placental abruption, preeclampsia, bleeding in II or III trimester, and placenta previa. MSAFP ≥ 1.5 MoM had a sensitivity of 29% and a false positive rate of 10%. The levels of the maternal serum free beta human chorionic gonadotrophin MoM did not differ between the cases and the controls. None of the angiogenic factors (soluble endoglin, soluble fms-like tyrosine kinase 1, or placental growth factor) showed any difference between the cases (n=42) and the controls (n=50) in the second trimester. The levels of C-reactive protein (CRP) showed no difference between the cases (n=181) and the controls (n=261) (median 2.35 mg/l [interquartile range {IQR} 1.09-5.93] versus 2.28 mg/l [IQR 0.92-5.01], not significant) when tested in the first trimester (mean 10.4 gestational weeks). Chlamydia pneumoniae specific immunoglobulin G (IgG) and immunoglobulin A (IgA) as well as C. trachomatis specific IgG, IgA and chlamydial heat-shock protein 60 antibody rates were similar between the groups. In conclusion, although univariate analysis identified many prepregnancy risk factors for placental abruption, only smoking, uterine malformation, previous cesarean section and history of placental abruption remained significant by multivariate analysis. During the index pregnancy maternal alcohol consumption and smoking and smoking by the partner turned out to be the major independent risk factors for placental abruption. Smoking by both partners multiplied the risk. The liberal use of ultrasound examination contributed little to the management of women with placental abruption. Although second-trimester MSAFP levels were higher in women with subsequent placental abruption, clinical usefulness of this test is limited due to low sensitivity and high false positive rate. Similarly, angiogenic factors in early second trimester, or CRP levels, or chlamydial antibodies in the first trimester failed to predict placental abruption.
Resumo:
Juvenile neuronal ceroid lipofuscinosis (JNCL) is one of the most common neurodegenerative diseases in childhood. Its clinical onset, with visual failure as the first sign, is between the ages of 4 to 8 years. During the disease progress, epilepsy, motor symptoms, cognitive decline, and psychiatric symptoms become apparent. It leads to premature death between ages 15 and 30. Treatment consists of symptomatic drug administration and various forms of rehabilitation, but to date, no curative treatment exists. To gain a more comprehensive picture of psychiatric problems, symptoms were evaluated by the Child Behavior Checklist, the Teacher Report Form, and the Children s Depression Inventory. The JNCL patients had a great number of severe psychiatric symptoms, with wide inter-individual variability. The most common symptoms were social, thought, attention, and sleep problems, somatic complaints, and aggressive behaviour. Patients with psychotropic treatment had more problems than did those without psychotropic treatment, and female patients had more problems than did males. Between 10 and 20% of the patients reported depressive symptoms. In a 5-year follow-up, [123I]β-CIT SPECT and MRI revealed a tendency of decreasing serotonin transporter (SERT) availability and progressive brain atrophy. The correlation between changes in midbrain SERT and total brain volume was positive; no correlation appeared between SERT or brain atrophy and depressive symptoms. Thus, it seems likely that the low SERT availability is associated with progressive brain atrophy; it may also predispose towards depression, however. An open survey of psychotropic drugs and their efficacy was performed on JNCL patients in Finland. The most commonly used psychotropic drugs were the antidepressant citalopram and the antipsychotic risperidone. Their efficacy was good or satisfactory in the majority of cases and they seemed well tolerated. Quetiapine had a marked effect on one patient with a history of severe psychotic symptoms. Glutamate decarboxylase 65 autoantibodies (GAD65ab), found in JNCL patients, indicate that an immunomediated reaction against GAD or GABAergic neurons may play a part in the underlying pathogenetic mechanism. GAD65ab s also appeared in the serum of all eight JNCL patients included and intermittent corticosteroid therapy was initiated in all cases. After one year, the GAD65ab s had disappeared in the two oldest patients, who experienced an improvement in motor symptoms and alertness associated with their prednisolone therapy. Two younger patients experienced a significant IQ increase, but no change in GADab s. A randomized study with longer follow-up time is needed, however, to clarify the effect of prednisolone on disease progression.
Resumo:
Venous thromboembolism (VTE) is the greatest single cause of maternal mortality in pregnant women in developed countries. Pregnancy is a hypercoagulable state and brings about an enhanced risk of deep venous thrombosis (DVT) in otherwise healthy women. Traditionally, unfractionated heparin (UFH) has been used for treatment of DVT during pregnancy. We showed in our observational study that low molecular weight heparin (LMWH) is as effective and safe as UFH in the treatment of DVT during pregnancy. Although DVT during pregnancy is often massive, increasing the risk of developing long-term consequences, namely post-thrombotic syndrome (PTS), only 11% of all patients had confirmed PTS 3 4 years after DVT. In our studies the prevalence of PTS was not dependent on treatment (UFH vs LMWH). Low molecular weight heparin is more easily administered, few laboratory controls are required and the hospital stay is shorter, factors that lower the costs of treatment. Cervical insufficiency is defined as repeated very preterm delivery during the second or early third trimester. Infection is a well-known risk factor of preterm delivery. We found overpresentation of thrombophilic mutations (FV Leiden, prothrombin G20210A)among 42 patients with cervical insufficiency compared with controls (OR 6.7, CI 2.7 18.4). Thus, thrombophilia might be a risk factor of cervical insufficiency possibly explained by interaction of coagulation and inflammation processes. The presence of antiphospholipid (aPL) antibodies increases the risk for recurrent miscarriage (RM). Annexins are proteins which all bind to anionic phospholipids (PLs) preventing clotting on vascular phospholipid surfaces. Plasma concentrations of circulating annexin IV and V were investigated in 77 pregnancies at the beginning of pregnancy among women with a history of RM, and in connection to their aPL antibody status. Control group consisted unselected pregnant patients (n=25) without history of adverse pregnancy outcome. Plasma levels of annexin V were significantly higher at the beginning (≤5th week) of pregnancy in women with aPL antibodies compared with those without aPL antibodies (P=0.03). Levels of circulating annexin V were also higher at the 6th (P= 0.01) and 8th week of pregnancy in subjects with aPL antibodies (P=0.01). Results support the hypothesis that aPL could displace annexin from anionic phospholipid surfaces of syncytiotrophoblasts (STBs) and may exert procoagulant activities on the surfaces of STBs Recurrent miscarriage (RM) has been suggested to be caused by mutations in genes coding for various coagulation factors resulting in thrombophilia. In the last study of my thesis were investigated the prevalence of thrombomodulin (TM) and endothelial protein C receptor polymorphism EPCR among 40 couples and six women suffering RM. This study showed that mutations in the TM or EPCR genes are not a major cause of RM in Finnish patients.
Resumo:
The aim of the study was to evaluate gastrointestinal (GI) complications after kidney transplantation in the Finnish population. The adult patients included underwent kidney transplantation at Helsinki University Central Hospital in 1990-2000. Data on GI complications were collected from the Finnish Kidney Transplantation Registry, patient records and from questionnaires sent to patients. Helicobacter pylori IgG and IgA antibodies were measured from 500 patients before kidney transplantation and after a median 6.8-year follow up. Oesophagogastroduodenoscopy with biopsies was performed on 46 kidney transplantation patients suffering from gastroduodenal symptoms and 43 dyspeptic controls for studies of gastroduodenal cytomegalovirus (CMV) infection. Gallbladder ultrasound was performed on 304 patients after a median of 7.4 years post transplantation. Data from these 304 patients were also collected on serum lipids, body mass index and the use of statin medication. Severe GI complications occurred in 147 (10%) of 1515 kidney transplantations, 6% of them fatal after a median of 0.93 years. 51% of the complications occurred during the first post transplantation year, with highest incidence in gastroduodenal ulcers and complications of the colon. Patients with GI complications were older and had more delayed graft function and patients with polycystic kidney disease had more GI complications than the other patients. H.pylori seropositivity rate was 31% and this had no influence on graft or patient survival. 29% of the H.pylori seropositive patients seroreverted without eradication therapy. 74% of kidney transplantation patients had CMV specific matrix protein pp65 or delayed early protein p52 positive findings in the gastroduodenal mucosa, and 53% of the pp65 or p52 positive patients had gastroduodenal erosions without H.pylori findings. After the transplantation 165 (11%) patients developed gallstones. A biliary complication including 1 fatal cholecystitis developed in 15% of the patients with gallstones. 13 (0.9%) patients had pancreatitis. Colon perforations, 31% of them fatal, occurred in 16 (1%) patients. 13 (0.9%) developed a GI malignancy during the follow up. 2 H.pylori seropositive patients developed gastroduodenal malignancies during the follow up. In conclusion, severe GI complications usually occur early after kidney transplantation. Colon perforations are especially serious in kidney transplantation patients and colon diverticulosis and gallstones should be screened and treated before transplantation. When found, H.pylori infection should also be treated in these patients.
Resumo:
Most of the genes in the MHC region are involveed in adaptive and innate immunity, with essential function in inflammatory reactions and in protection against infections. These genes might serve as a candidate region for infection and inflammation associated diseases. CAD is an inflammatory disease. The present set of studies was performed to assess whether the MHC region harbors genetic markers for CAD, and whether these genetic markers explain the CAD risk factors: e.g., C. pneumoniae, periodontitis, and periodontal pathogens. Study I was performed using two separate patient materials and age- and sex-matched healthy controls, categorizing them into two independent studies: the HTx and ACS studies. Both studies consistently showed the HLA-A3– B35– DR1 (35 ancestral haplotype) haplotype as a susceptible MHC genetic marker for CAD. HLA-DR1 alone was associated not only with CAD, but also with CAD risk factor diseases, e.g., diabetes mellitus, and hyperlipidemia. The ACS study further showed the HLA-B*07 and -DRB1*15 -related haplotype as a protective MHC haplotype for CAD. Study II showed that patients with CAD showed signs of chronic C. pneumoniae infection when compared to age- and sex-matched healthy controls. HLA-B*35 or -related haplotypes associated with the C. pneumoniae infection markers. Among these haplotype carriers, males and smokers associated with elevated C. pneumoniae infection markers. Study III showed that CAD patients with periodontitis had elevated serum markers of P. gingivalis and occurrence of the pathogen in saliva. LTA+496C strongly associated with periodontitis, while HLA-DRB1*01 with periodontitis and with the elevated serum antibodies of P. gingivalis. Study IV showed that the increased level of C3/C4 ratio was a new risk factor and was associated with recurrent cardiovascular end-points. The increased C3 and decreased C4 concentrations in serum explained the increased level of the C3/C4 ratio. Both the higher than cut-off value (4.53) and the highest quartile of the C3/C4 ratio were also associated with worst survival, increased end-points, and C4 null alleles. The presence of C4 null alleles associated with decreased serum C4 concentration, and increased C3/C4 ratio. In conclusion, the present studies show that the CAD susceptibility haplotype (HLA-A3− B35− DR1 -related haplotypes, Study I) partially explains the development of CAD in patients possessing several recognized and novel risk factors: diabetes mellitus, increased LDL, smoking, C4B*Q0, C. pneumnoiae, periodontitis, P. gingivalis, and complement C3/C4 ratio (Study II, III, and IV).
Resumo:
The rapid increase in allergic diseases in developed, high-income countries during recent decades is attributed to several changes in the environment such as urbanization and improved hygiene. This relative lack of microbial stimulation is connected to a delay in maturation of the infantile immune system and seems to predispose especially genetically prone infants to allergic diseases. Probiotics, which are live ingestible health-promoting microbes, may compensate for the lack of microbial stimulation of the developing gut immune system and may thus be beneficial in prevention of allergies. Prebiotics, which are indigestible nutrients by us, promote the growth and activity of a number of bacterial strains considered beneficial for the gut. In a large cohort of 1 223 infants at hereditary risk for allergies we studied in a double-blind placebo-controlled manner whether probiotics administered in early life prevent allergic diseases from developing. We also evaluated their safety and their effects on common childhood infections, vaccine antibody responses, and intestinal immune markers. Pregnant mothers used a mixture of four probiotic bacteria or a placebo, from their 36th week of gestation. Their infants received the same probiotics plus prebiotic galacto-oligosaccharides for 6 months. The 2-year follow-up consisted of clinical examinations and allergy tests, fecal and blood sampling, and regular questionnaires. Among the 925 infants participating in the 2-year follow-up the cumulative incidence of any allergic disease (food allergy, eczema, asthma, rhinitis) was comparable in the probiotic (32%) and the placebo (35%) group. However, eczema, which was the most common manifestation (88%) of all allergic diseases, occurred less frequently in the probiotic (26%) than in the placebo group (32%). The preventive effect was more pronounced against atopic (IgE-associated) eczema which, of all atopic diseases, accounted for 92%. The relative risk reduction of eczema was 26% and of atopic eczema 34%. To prevent one case of eczema, the number of mother-infant pairs needed to treat was 16. Probiotic treatment was safe without any undesirable outcome for neonatal morbidity, feeding-related behavior, serious adverse events, growth, or for vaccine-induced antibody responses. Fewer infants in the probiotic than in the placebo group received antibiotics during their first 6 months of life and thereafter to age 2 years suffered from fewer respiratory tract infections. As a novel finding, we discovered that high fecal immunoglobulin A (IgA) concentrations at age 6 months associated with reduced risk for atopic (IgE-associated) diseases by age 2 years. In conclusion, although feeding probiotics to high-risk newborn infants showed no preventive effect on the cumulative incidence of any allergic diseases by age 2, they apparently prevented eczema. This probiotic effect was more pronounced among IgE-sensitized infants. The treatment was safe and seemed to stimulate maturation of the immune system as indicated by increased resistance to respiratory infections and improved vaccine antibody responses.
Resumo:
The cytochrome P450 1A2 (CYP1A2) is one of the major metabolizing enzymes. The muscle relaxant tizanidine is a selective substrate of CYP1A2, and the non-steroidal anti-inflammatory drug (NSAID) rofecoxib was thought to modestly in-hibit it. Cases suggesting an interaction between tizanidine and rofecoxib had been reported, but the mechanism was unknown. Also other NSAIDs are often used in combination with muscle relaxants. The aims of this study were to investigate the effect of rofecoxib, several other NSAIDs and female sex steroids on CYP1A2 ac-tivity in vitro and in vivo, and to evaluate the predictability of in vivo inhibition based on in vitro data. In vitro, the effect of several NSAIDs, female sex steroids and model inhibitors on CYP1A2 activity was studied in human liver microsomes, without and with preincubation. In placebo controlled, cross-over studies healthy volunteers ingested a single dose of tizanidine after a pretreament with the inhibitor (rofecoxib, tolfenamic acid or celecoxib) or placebo. Plasma (and urine) concentrations of tizanidine and its metabolites were measured, and the pharmacodynamic effects were recorded. A caffeine test was also performed. In vitro, fluvoxamine, tolfenamic acid, mefenamic acid and rofecoxib potently in-hibited CYP1A2. Ethinylestradiol, celecoxib, desogestrel and zolmitriptan were moderate, and etodolac, ciprofloxacin, etoricoxib and gestodene were weak inhibi-tors of CYP1A2. At 100 µM, other tested NSAIDs and steroids inhibited CYP1A2 less than 35%. Rofecoxib was found to be a mechanism-based inhibitor of CYP1A2. In vivo, rofecoxib greatly increased the plasma concentrations (over ten-fold) and the pharmacodynamic effects of tizanidine. Also the metabolism of caf-feine was impaired by rofecoxib. Despite the relatively strong in vitro CYP1A2 inhibitory effects, tolfenamic acid and celecoxib did not have a significant effect on tizanidine and caffeine concentrations in humans. Competitive inhibition model and the free plasma concentration of the inhibitor predicted well the effect of fluvoxam-ine and the lack of effect of tolfenamic acid and celecoxib on tizanidine concentra-tions in humans, and mechanism-based inhibition model explained the effects of rofecoxib. However, the effects of ciprofloxacin and oral contraceptives were un-derestimated from the in vitro data. Rofecoxib is a potent mechanism-based inhibitor of CYP1A2 in vitro and in vivo. This mechanism may be involved in the adverse cardiovascular effects of rofecoxib. Tolfenamic acid and celecoxib seem to be safe in combination with tizanidine, but mefenamic acid might have some effect on tizanidine concentrations in vivo. Con-sidering the mechanism of inhibition, and using the free plasma concentration of the inhibitor, many but not all CYP1A2 interactions can be predicted from in vitro data.
Resumo:
Aims: To gain insight on the immunological processes behind cow’s milk allergy (CMA) and the development of oral tolerance. To furthermore investigate the associations of HLA II and filaggrin genotypes with humoral responses to early oral antigens. Methods: The study population was from a cohort of 6209 healthy, full-term infants who in a double-blind randomized trial received supplementary feeding at maternity hospitals (mean duration 4 days): cow’s milk (CM) formula, extensively hydrolyzed whey formula or donor breast milk. Infants who developed CM associated symptoms that subsided during elimination diet (n=223) underwent an open oral CM challenge (at mean age 7 months). The challenge was negative in 112, and in 111 it confirmed CMA, which was IgE-mediated in 83. Patients with CMA were followed until recovery, and 94 of them participated in a follow-up study at age 8-9 years. We investigated serum samples at diagnosis (mean age 7 months, n=111), one year later (19 months, n=101) and at follow-up (8.6 years, n=85). At follow-up, also 76 children randomly selected from the original cohort and without CM associated symptoms were included. We measured CM specific IgE levels with UniCAP (Phadia, Uppsala, Sweden), and β-lactoglobulin, α-casein and ovalbumin specific IgA, IgG1, IgG4 and IgG levels with enzyme-linked immunosorbent assay in sera. We applied a microarray based immunoassay to measure the binding of IgE, IgG4 and IgA serum antibodies to sequential epitopes derived from five major CM proteins at the three time points in 11 patients with active IgE-mediated CMA at age 8-9 years and in 12 patients who had recovered from IgE-mediated CMA by age 3 years. We used bioinformatic methods to analyze the microarray data. We studied T cell expression profile in peripheral blood mononuclear cell (PBMC) samples from 57 children aged 5-12 years (median 8.3): 16 with active CMA, 20 who had recovered from CMA by age 3 years, 21 non-atopic control subjects. Following in vitro β-lactoglobulin stimulation, we measured the mRNA expression in PBMCs of 12 T-cell markers (T-bet, GATA-3, IFN-γ, CTLA4, IL-10, IL-16, TGF-β, FOXP3, Nfat-C2, TIM3, TIM4, STIM-1) with quantitative real time polymerase chain reaction, and the protein expression of CD4, CD25, CD127, FoxP3 with flow cytometry. To optimally distinguish the three study groups, we performed artificial neural networks with exhaustive search for all marker combinations. For genetic associations with specific humoral responses, we analyzed 14 HLA class II haplotypes, the PTPN22 1858 SNP (R620W allele) and 5 known filaggrin null mutations from blood samples of 87 patients with CMA and 76 control subjects (age 8.0-9.3 years). Results: High IgG and IgG4 levels to β-lactoglobulin and α-casein were associated with the HLA (DR15)-DQB1*0602 haplotype in patients with CMA, but not in control subjects. Conversely, (DR1/10)-DQB1*0501 was associated with lower IgG and IgG4 levels to these CM antigens, and to ovalbumin, most significantly among control subjects. Infants with IgE-mediated CMA had lower β -lactoglobulin and α-casein specific IgG1, IgG4 and IgG levels (p<0.05) at diagnosis than infants with non-IgE-mediated CMA or control subjects. When CMA persisted beyond age 8 years, CM specific IgE levels were higher at all three time points investigated and IgE epitope binding pattern remained stable (p<0.001) compared with recovery from CMA by age 3 years. Patients with persisting CMA at 8-9 years had lower serum IgA levels to β-lactoglobulin at diagnosis (p=0.01), and lower IgG4 levels to β-lactoglobulin (p=0.04) and α-casein (p=0.05) at follow-up compared with patients who recovered by age 3 years. In early recovery, signal of IgG4 epitope binding increased while that of IgE decreased over time, and binding patterns of IgE and IgG4 overlapped. In T cell expression profile in response to β –lactoglobulin, the combination of markers FoxP3, Nfat-C2, IL-16, GATA-3 distinguished patients with persisting CMA most accurately from patients who had become tolerant and from non-atopic subjects. FoxP3 expression at both RNA and protein level was higher in children with CMA compared with non-atopic children. Conclusions: Genetic factors (the HLA II genotype) are associated with humoral responses to early food allergens. High CM specific IgE levels predict persistence of CMA. Development of tolerance is associated with higher specific IgA and IgG4 levels and lower specific IgE levels, with decreased CM epitope binding by IgE and concurrent increase in corresponding epitope binding by IgG4. Both Th2 and Treg pathways are activated upon CM antigen stimulation in patients with CMA. In the clinical management of CMA, HLA II or filaggrin genotyping are not applicable, whereas the measurement of CM specific antibodies may assist in estimating the prognosis.
Resumo:
Nanotechnology applications are entering the market in increasing numbers, nanoparticles being among the main classes of materials used. Particles can be used, e.g., for catalysing chemical reactions, such as is done in car exhaust catalysts today. They can also modify the optical and electronic properties of materials or be used as building blocks for thin film coatings on a variety of surfaces. To develop materials for specific applications, an intricate control of the particle properties, structure, size and shape is required. All these depend on a multitude of factors from methods of synthesis and deposition to post-processing. This thesis addresses the control of nanoparticle structure by low-energy cluster beam deposition and post-synthesis ion irradiation. Cluster deposition in high vacuum offers a method for obtaining precisely controlled cluster-assembled materials with minimal contamination. Due to the clusters small size, however, the cluster-surface interaction may drastically change the cluster properties on deposition. In this thesis, the deposition process of metal and alloy clusters on metallic surfaces is modelled using molecular dynamics simulations, and the mechanisms influencing cluster structure are identified. Two mechanisms, mechanical melting upon deposition and thermally activated dislocation motion, are shown to determine whether a deposited cluster will align epitaxially with its support. The semiconductor industry has used ion irradiation as a tool to modify material properties for decades. Irradiation can be used for doping, patterning surfaces, and inducing chemical ordering in alloys, just to give a few examples. The irradiation response of nanoparticles has, however, remained an almost uncharted territory. Although irradiation effects in nanoparticles embedded inside solid matrices have been studied, almost no work has been done on supported particles. In this thesis, the response of supported nanoparticles is studied systematically for heavy and light ion irradiation. The processes leading to damage production are identified and models are developed for both types of irradiation. In recent experiments, helium irradiation has been shown to induce a phase transformation from multiply twinned to single-crystalline nanoparticles in bimetallic alloys, but the nature of the transition has remained unknown. The alloys for which the effect has been observed are CuAu and FePt. It is shown in this thesis that transient amorphization leads to the observed transition and that while CuAu and FePt do not amorphize upon irradiation in bulk or as thin films, they readily do so as nanoparticles. This is the first time such an effect is demonstrated with supported particles, not embedded in a matrix where mixing is always an issue. An understanding of the above physical processes is essential, if nanoparticles are to be used in applications in an optimal way. This thesis clarifies the mechanisms which control particle morphology, and paves way for the synthesis of nanostructured materials tailored for specific applications.