959 resultados para arithmetic progressions in sumsets
Resumo:
Recent evidence has highlighted the important role that number ordering skills play in arithmetic abilities (e.g., Lyons & Beilock, 2011). In fact, Lyons et al. (2014) demonstrated that although at the start of formal mathematics education number comparison skills are the best predictors of arithmetic performance, from around the age of 10, number ordering skills become the strongest numerical predictors of arithmetic abilities. In the current study we demonstrated that number comparison and ordering skills were both significantly related to arithmetic performance in adults, and the effect size was greater in the case of ordering skills. Additionally, we found that the effect of number comparison skills on arithmetic performance was partially mediated by number ordering skills. Moreover, performance on comparison and ordering tasks involving the months of the year was also strongly correlated with arithmetic skills, and participants displayed similar (canonical or reverse) distance effects on the comparison and ordering tasks involving months as when the tasks included numbers. This suggests that the processes responsible for the link between comparison and ordering skills and arithmetic performance are not specific to the domain of numbers. Finally, a factor analysis indicated that performance on comparison and ordering tasks loaded on a factor which included performance on a number line task and self-reported spatial thinking styles. These results substantially extend previous research on the role of order processing abilities in mental arithmetic.
Resumo:
Soit $p_1 = 2, p_2 = 3, p_3 = 5,\ldots$ la suite des nombres premiers, et soient $q \ge 3$ et $a$ des entiers premiers entre eux. R\'ecemment, Daniel Shiu a d\'emontr\'e une ancienne conjecture de Sarvadaman Chowla. Ce dernier a conjectur\'e qu'il existe une infinit\'e de couples $p_n,p_{n+1}$ de premiers cons\'ecutifs tels que $p_n \equiv p_{n+1} \equiv a \bmod q$. Fixons $\epsilon > 0$. Une r\'ecente perc\'ee majeure, de Daniel Goldston, J\`anos Pintz et Cem Y{\i}ld{\i}r{\i}m, a \'et\'e de d\'emontrer qu'il existe une suite de nombres r\'eels $x$ tendant vers l'infini, tels que l'intervalle $(x,x+\epsilon\log x]$ contienne au moins deux nombres premiers $\equiv a \bmod q$. \'Etant donn\'e un couple de nombres premiers $\equiv a \bmod q$ dans un tel intervalle, il pourrait exister un nombre premier compris entre les deux qui n'est pas $\equiv a \bmod q$. On peut d\'eduire que soit il existe une suite de r\'eels $x$ tendant vers l'infini, telle que $(x,x+\epsilon\log x]$ contienne un triplet $p_n,p_{n+1},p_{n+2}$ de nombres premiers cons\'ecutifs, soit il existe une suite de r\'eels $x$, tendant vers l'infini telle que l'intervalle $(x,x+\epsilon\log x]$ contienne un couple $p_n,p_{n+1}$ de nombres premiers tel que $p_n \equiv p_{n+1} \equiv a \bmod q$. On pense que les deux \'enonc\'es sont vrais, toutefois on peut seulement d\'eduire que l'un d'entre eux est vrai, sans savoir lequel. Dans la premi\`ere partie de cette th\`ese, nous d\'emontrons que le deuxi\`eme \'enonc\'e est vrai, ce qui fournit une nouvelle d\'emonstration de la conjecture de Chowla. La preuve combine des id\'ees de Shiu et de Goldston-Pintz-Y{\i}ld{\i}r{\i}m, donc on peut consid\'erer que ce r\'esultat est une application de leurs m\'thodes. Ensuite, nous fournirons des bornes inf\'erieures pour le nombre de couples $p_n,p_{n+1}$ tels que $p_n \equiv p_{n+1} \equiv a \bmod q$, $p_{n+1} - p_n < \epsilon\log p_n$, avec $p_{n+1} \le Y$. Sous l'hypoth\`ese que $\theta$, le \og niveau de distribution \fg{} des nombres premiers, est plus grand que $1/2$, Goldston-Pintz-Y{\i}ld{\i}r{\i}m ont r\'eussi \`a d\'emontrer que $p_{n+1} - p_n \ll_{\theta} 1$ pour une infinit\'e de couples $p_n,p_{n+1}$. Sous la meme hypoth\`ese, nous d\'emontrerons que $p_{n+1} - p_n \ll_{q,\theta} 1$ et $p_n \equiv p_{n+1} \equiv a \bmod q$ pour une infinit\'e de couples $p_n,p_{n+1}$, et nous prouverons \'egalement un r\'esultat quantitatif. Dans la deuxi\`eme partie, nous allons utiliser les techniques de Goldston-Pintz-Y{\i}ld{\i}r{\i}m pour d\'emontrer qu'il existe une infinit\'e de couples de nombres premiers $p,p'$ tels que $(p-1)(p'-1)$ est une carr\'e parfait. Ce resultat est une version approximative d'une ancienne conjecture qui stipule qu'il existe une infinit\'e de nombres premiers $p$ tels que $p-1$ est une carr\'e parfait. En effet, nous d\'emontrerons une borne inf\'erieure sur le nombre d'entiers naturels $n \le Y$ tels que $n = \ell_1\cdots \ell_r$, avec $\ell_1,\ldots,\ell_r$ des premiers distincts, et tels que $(\ell_1-1)\cdots (\ell_r-1)$ est une puissance $r$-i\`eme, avec $r \ge 2$ quelconque. \'Egalement, nous d\'emontrerons une borne inf\'erieure sur le nombre d'entiers naturels $n = \ell_1\cdots \ell_r \le Y$ tels que $(\ell_1+1)\cdots (\ell_r+1)$ est une puissance $r$-i\`eme. Finalement, \'etant donn\'e $A$ un ensemble fini d'entiers non-nuls, nous d\'emontrerons une borne inf\'erieure sur le nombre d'entiers naturels $n \le Y$ tels que $\prod_{p \mid n} (p+a)$ est une puissance $r$-i\`eme, simultan\'ement pour chaque $a \in A$.
Resumo:
Le sujet principal de cette thèse est la distribution des nombres premiers dans les progressions arithmétiques, c'est-à-dire des nombres premiers de la forme $qn+a$, avec $a$ et $q$ des entiers fixés et $n=1,2,3,\dots$ La thèse porte aussi sur la comparaison de différentes suites arithmétiques par rapport à leur comportement dans les progressions arithmétiques. Elle est divisée en quatre chapitres et contient trois articles.
Le premier chapitre est une invitation à la théorie analytique des nombres, suivie d'une revue des outils qui seront utilisés plus tard. Cette introduction comporte aussi certains résultats de recherche, que nous avons cru bon d'inclure au fil du texte.
Le deuxième chapitre contient l'article \emph{Inequities in the Shanks-Rényi prime number
race: an asymptotic formula for the densities}, qui est le fruit de recherche conjointe avec le professeur Greg Martin. Le but de cet article est d'étudier un phénomène appelé le <
Resumo:
We propose a new abstract domain for static analysis of executable code. Concrete states are abstracted using circular linear progressions (CLPs). CLPs model computations using a finite word length as is seen in any real life processor. The finite abstraction allows handling overflow scenarios in a natural and straight-forward manner. Abstract transfer functions have been defined for a wide range of operations which makes this domain easily applicable for analyzing code for a wide range of ISAs. CLPs combine the scalability of interval domains with the discreteness of linear congruence domains. We also present a novel, lightweight method to track linear equality relations between static objects that is used by the analysis to improve precision. The analysis is efficient, the total space and time overhead being quadratic in the number of static objects being tracked.
Resumo:
We show here a 2(Omega(root d.log N)) size lower bound for homogeneous depth four arithmetic formulas. That is, we give an explicit family of polynomials of degree d on N variables (with N = d(3) in our case) with 0, 1-coefficients such that for any representation of a polynomial f in this family of the form f = Sigma(i) Pi(j) Q(ij), where the Q(ij)'s are homogeneous polynomials (recall that a polynomial is said to be homogeneous if all its monomials have the same degree), it must hold that Sigma(i,j) (Number of monomials of Q(ij)) >= 2(Omega(root d.log N)). The above mentioned family, which we refer to as the Nisan-Wigderson design-based family of polynomials, is in the complexity class VNP. Our work builds on the recent lower bound results 1], 2], 3], 4], 5] and yields an improved quantitative bound as compared to the quasi-polynomial lower bound of 6] and the N-Omega(log log (N)) lower bound in the independent work of 7].
Resumo:
Part I
Studies of vibrational relaxation in excited electronic states of simple diatomic molecules trapped in solid rare-gas matrices at low temperatures are reported. The relaxation is investigated by monitoring the emission intensity from vibrational levels of the excited electronic state to vibrational levels of the ground electronic state. The emission was in all cases excited by bombardment of the doped rare-gas solid with X-rays.
The diatomics studied and the band systems seen are: N2, Vegard-Kaplan and Second Positive systems; O2, Herzberg system; OH and OD, A 2Σ+ - X2IIi system. The latter has been investigated only in solid Ne, where both emission and absorption spectra were recorded; observed fine structure has been partly interpreted in terms of slightly perturbed rotational motion in the solid. For N2, OH, and OD emission occurred from v' > 0, establishing a vibrational relaxation time in the excited electronic state of the order, of longer than, the electronic radiative lifetime. The relative emission intensity and decay times for different v' progressions in the Vegard-Kaplan system are found to depend on the rare-gas host and the N2 concentration, but are independent of temperature in the range 1.7°K to 30°K.
Part II
Static crystal field effects on the absorption, fluorescence, and phosphorescence spectra of isotopically mixed benzene crystals were investigated. Evidence is presented which demonstrate that in the crystal the ground, lowest excited singlet, and lowest triplet states of the guest deviate from hexagonal symmetry. The deviation appears largest in the lowest triplet state and may be due to an intrinsic instability of the 3B1u state. High resolution absorption and phospho- rescence spectra are reported and analyzed in terms of site-splitting of degenerate vibrations and orientational effects. The guest phosphorescence lifetime for various benzene isotopes in C6D6 and sym-C6H3D3 hosts is presented and discussed.
Resumo:
A high performance VLSI architecture to perform combined multiply-accumulate, divide, and square root operations is proposed. The circuit is highly regular, requires only minimal control, and can be pipelined right down to the bit level. The system can also be reconfigured on every cycle to perform one or more of these operations. The throughput rate for each operation is the same and is wordlength independent. This is achieved using redundant arithmetic. With current CMOS technology, throughput rates in excess of 80 million operations per second are expected.
Resumo:
Recently, two fast selective encryption methods for context-adaptive variable length coding and context-adaptive binary arithmetic coding in H.264/AVC were proposed by Shahid et al. In this paper, it was demonstrated that these two methods are not as efficient as only encrypting the sign bits of nonzero coefficients. Experimental results showed that without encrypting the sign bits of nonzero coefficients, these two methods can not provide a perceptual scrambling effect. If a much stronger scrambling effect is required, intra prediction modes, and the sign bits of motion vectors can be encrypted together with the sign bits of nonzero coefficients. For practical applications, the required encryption scheme should be customized according to a user's specified requirement on the perceptual scrambling effect and the computational cost. Thus, a tunable encryption scheme combining these three methods is proposed for H.264/AVC. To simplify its implementation and reduce the computational cost, a simple control mechanism is proposed to adjust the control factors. Experimental results show that this scheme can provide different scrambling levels by adjusting three control factors with no or very little impact on the compression performance. The proposed scheme can run in real-time and its computational cost is minimal. The security of the proposed scheme is also discussed. It is secure against the replacement attack when all three control factors are set to one.
Resumo:
La compression des données est la technique informatique qui vise à réduire la taille de l’information pour minimiser l’espace de stockage nécessaire et accélérer la transmission des données dans les réseaux à bande passante limitée. Plusieurs techniques de compression telles que LZ77 et ses variantes souffrent d’un problème que nous appelons la redondance causée par la multiplicité d’encodages. La multiplicité d’encodages (ME) signifie que les données sources peuvent être encodées de différentes manières. Dans son cas le plus simple, ME se produit lorsqu’une technique de compression a la possibilité, au cours du processus d’encodage, de coder un symbole de différentes manières. La technique de compression par recyclage de bits a été introduite par D. Dubé et V. Beaudoin pour minimiser la redondance causée par ME. Des variantes de recyclage de bits ont été appliquées à LZ77 et les résultats expérimentaux obtenus conduisent à une meilleure compression (une réduction d’environ 9% de la taille des fichiers qui ont été compressés par Gzip en exploitant ME). Dubé et Beaudoin ont souligné que leur technique pourrait ne pas minimiser parfaitement la redondance causée par ME, car elle est construite sur la base du codage de Huffman qui n’a pas la capacité de traiter des mots de code (codewords) de longueurs fractionnaires, c’est-à-dire qu’elle permet de générer des mots de code de longueurs intégrales. En outre, le recyclage de bits s’appuie sur le codage de Huffman (HuBR) qui impose des contraintes supplémentaires pour éviter certaines situations qui diminuent sa performance. Contrairement aux codes de Huffman, le codage arithmétique (AC) peut manipuler des mots de code de longueurs fractionnaires. De plus, durant ces dernières décennies, les codes arithmétiques ont attiré plusieurs chercheurs vu qu’ils sont plus puissants et plus souples que les codes de Huffman. Par conséquent, ce travail vise à adapter le recyclage des bits pour les codes arithmétiques afin d’améliorer l’efficacité du codage et sa flexibilité. Nous avons abordé ce problème à travers nos quatre contributions (publiées). Ces contributions sont présentées dans cette thèse et peuvent être résumées comme suit. Premièrement, nous proposons une nouvelle technique utilisée pour adapter le recyclage de bits qui s’appuie sur les codes de Huffman (HuBR) au codage arithmétique. Cette technique est nommée recyclage de bits basé sur les codes arithmétiques (ACBR). Elle décrit le cadriciel et les principes de l’adaptation du HuBR à l’ACBR. Nous présentons aussi l’analyse théorique nécessaire pour estimer la redondance qui peut être réduite à l’aide de HuBR et ACBR pour les applications qui souffrent de ME. Cette analyse démontre que ACBR réalise un recyclage parfait dans tous les cas, tandis que HuBR ne réalise de telles performances que dans des cas très spécifiques. Deuxièmement, le problème de la technique ACBR précitée, c’est qu’elle requiert des calculs à précision arbitraire. Cela nécessite des ressources illimitées (ou infinies). Afin de bénéficier de cette dernière, nous proposons une nouvelle version à précision finie. Ladite technique devienne ainsi efficace et applicable sur les ordinateurs avec les registres classiques de taille fixe et peut être facilement interfacée avec les applications qui souffrent de ME. Troisièmement, nous proposons l’utilisation de HuBR et ACBR comme un moyen pour réduire la redondance afin d’obtenir un code binaire variable à fixe. Nous avons prouvé théoriquement et expérimentalement que les deux techniques permettent d’obtenir une amélioration significative (moins de redondance). À cet égard, ACBR surpasse HuBR et fournit une classe plus étendue des sources binaires qui pouvant bénéficier d’un dictionnaire pluriellement analysable. En outre, nous montrons qu’ACBR est plus souple que HuBR dans la pratique. Quatrièmement, nous utilisons HuBR pour réduire la redondance des codes équilibrés générés par l’algorithme de Knuth. Afin de comparer les performances de HuBR et ACBR, les résultats théoriques correspondants de HuBR et d’ACBR sont présentés. Les résultats montrent que les deux techniques réalisent presque la même réduction de redondance sur les codes équilibrés générés par l’algorithme de Knuth.
Resumo:
The absorption spectrum of F2CSe in the 18800-21900 cm-1 region has been recorded at -770 C and 220 C under the conditions of medium resolution. The responsible electronic promotion is TI* + n excitation which leads to 3A2 and lA2 excited states. Progressions in vI', v2', v3" v4' and v4" have been identified in the spectrum and have been analyzed in terms of vibronic transitions between a planar ground state and a nQnplanar excited state. The - 3 - 1 - 1 - 1 origins of the a A2 + X Al and A A2 + X Al systems were assigned to the bands at 19018 cm-l and 19689 cm-l . This has given a singlet-triplet splittl. n g lA2 - 3A2 P f 671 cm -1 The out-of-plane wagging levels were found to be anharmonic. 1 -1 Barrier heights of 2483 cm- and 2923 cm were obtained for the lA2 and 3A2 upper states from a fitting of the energy levels of a Lorentzian-quadratic function to the observed levels in the out-of-plane wagging modes. 1 3 For the A2 and A2 states nonplanar equilibrium angles of 30.10 and 31.40 have been evaluated respectively. i
Resumo:
The current study evaluated, in vivo, the clinical safety and the anthelmintic efficacy of 24% aurixazole (24 mg/kg), administered orally, in bovines. Two experiments were conducted: the first one evaluating the clinical safety of 24% aurixazole (24 mg/kg) in cattle, and a second one evaluating the anthelmintic efficacy of aurixazole (24 mg/kg) against gastrointestinal nematodes on naturally infected cattle. Based on the results of clinical safety, no alterations on clinical and haematological signs and on the biochemical values obtained in animals treated orally with aurixazole 24 mg/kg were observed. Regarding the results of reduction or efficacy, obtained by eggs per gram of faeces (EPG) counts, the formulation of aurixazole reached values superior to 99% (arithmetic means) in all post-treatment dates. In two occasions, this formulation reached maximum efficacy (100%). Comparing these results with the reduction percentages obtained by EPG counts, it is possible to verify that the values obtained by all three formulations were compatible with the efficacy results. Aurixazole reached maximum efficacy (100%) against Haemonchus placei, Cooperia spatulata and Oesophagostomum radiatum. Against Cooperia punctata, this formulation reached an efficacy index of 99.99%. Regarding aurixazole, no specific trials were conducted on the field in order to evaluate the behaviour of this molecule against helminths that are resistant to other molecules, specially isolated levamisole and disophenolat: Due to this fact, future studies will be necessary to assess the effectiveness of aurixazole against strains of nematodes that are resistant to levamisole and disophenolat, but the results of clinical safety and efficacy described in this study allow us to conclude that the aurixazole molecule, concomitantly with other measures and orally administered formulations, can be another important tool in the control of nematodes parasitizing bovines. (C) 2014 Published by Elsevier Ltd.
Resumo:
In this paper we continue Feferman’s unfolding program initiated in (Feferman, vol. 6 of Lecture Notes in Logic, 1996) which uses the concept of the unfolding U(S) of a schematic system S in order to describe those operations, predicates and principles concerning them, which are implicit in the acceptance of S. The program has been carried through for a schematic system of non-finitist arithmetic NFA in Feferman and Strahm (Ann Pure Appl Log, 104(1–3):75–96, 2000) and for a system FA (with and without Bar rule) in Feferman and Strahm (Rev Symb Log, 3(4):665–689, 2010). The present contribution elucidates the concept of unfolding for a basic schematic system FEA of feasible arithmetic. Apart from the operational unfolding U0(FEA) of FEA, we study two full unfolding notions, namely the predicate unfolding U(FEA) and a more general truth unfolding UT(FEA) of FEA, the latter making use of a truth predicate added to the language of the operational unfolding. The main results obtained are that the provably convergent functions on binary words for all three unfolding systems are precisely those being computable in polynomial time. The upper bound computations make essential use of a specific theory of truth TPT over combinatory logic, which has recently been introduced in Eberhard and Strahm (Bull Symb Log, 18(3):474–475, 2012) and Eberhard (A feasible theory of truth over combinatory logic, 2014) and whose involved proof-theoretic analysis is due to Eberhard (A feasible theory of truth over combinatory logic, 2014). The results of this paper were first announced in (Eberhard and Strahm, Bull Symb Log 18(3):474–475, 2012).
Resumo:
Mathematical skills that we acquire during formal education mostly entail exact numerical processing. Besides this specifically human faculty, an additional system exists to represent and manipulate quantities in an approximate manner. We share this innate approximate number system (ANS) with other nonhuman animals and are able to use it to process large numerosities long before we can master the formal algorithms taught in school. Dehaene´s (1992) Triple Code Model (TCM) states that also after the onset of formal education, approximate processing is carried out in this analogue magnitude code no matter if the original problem was presented nonsymbolically or symbolically. Despite the wide acceptance of the model, most research only uses nonsymbolic tasks to assess ANS acuity. Due to this silent assumption that genuine approximation can only be tested with nonsymbolic presentations, up to now important implications in research domains of high practical relevance remain unclear, and existing potential is not fully exploited. For instance, it has been found that nonsymbolic approximation can predict math achievement one year later (Gilmore, McCarthy, & Spelke, 2010), that it is robust against the detrimental influence of learners´ socioeconomic status (SES), and that it is suited to foster performance in exact arithmetic in the short-term (Hyde, Khanum, & Spelke, 2014). We provided evidence that symbolic approximation might be equally and in some cases even better suited to generate predictions and foster more formal math skills independently of SES. In two longitudinal studies, we realized exact and approximate arithmetic tasks in both a nonsymbolic and a symbolic format. With first graders, we demonstrated that performance in symbolic approximation at the beginning of term was the only measure consistently not varying according to children´s SES, and among both approximate tasks it was the better predictor for math achievement at the end of first grade. In part, the strong connection seems to come about from mediation through ordinal skills. In two further experiments, we tested the suitability of both approximation formats to induce an arithmetic principle in elementary school children. We found that symbolic approximation was equally effective in making children exploit the additive law of commutativity in a subsequent formal task as a direct instruction. Nonsymbolic approximation on the other hand had no beneficial effect. The positive influence of the symbolic approximate induction was strongest in children just starting school and decreased with age. However, even third graders still profited from the induction. The results show that also symbolic problems can be processed as genuine approximation, but that beyond that they have their own specific value with regard to didactic-educational concerns. Our findings furthermore demonstrate that the two often con-founded factors ꞌformatꞌ and ꞌdemanded accuracyꞌ cannot be disentangled easily in first graders numerical understanding, but that children´s SES also influences existing interrelations between the different abilities tested here.