Unfolding Feasible Arithmetic and Weak Truth


Autoria(s): Eberhard, Sebastian; Strahm, Thomas Adrian
Contribuinte(s)

Achourioti, Theodora

Galinon, Henri

Martínez Fernández, José

Fujimoto, Kentaro

Data(s)

2015

Resumo

In this paper we continue Feferman’s unfolding program initiated in (Feferman, vol. 6 of Lecture Notes in Logic, 1996) which uses the concept of the unfolding U(S) of a schematic system S in order to describe those operations, predicates and principles concerning them, which are implicit in the acceptance of S. The program has been carried through for a schematic system of non-finitist arithmetic NFA in Feferman and Strahm (Ann Pure Appl Log, 104(1–3):75–96, 2000) and for a system FA (with and without Bar rule) in Feferman and Strahm (Rev Symb Log, 3(4):665–689, 2010). The present contribution elucidates the concept of unfolding for a basic schematic system FEA of feasible arithmetic. Apart from the operational unfolding U0(FEA) of FEA, we study two full unfolding notions, namely the predicate unfolding U(FEA) and a more general truth unfolding UT(FEA) of FEA, the latter making use of a truth predicate added to the language of the operational unfolding. The main results obtained are that the provably convergent functions on binary words for all three unfolding systems are precisely those being computable in polynomial time. The upper bound computations make essential use of a specific theory of truth TPT over combinatory logic, which has recently been introduced in Eberhard and Strahm (Bull Symb Log, 18(3):474–475, 2012) and Eberhard (A feasible theory of truth over combinatory logic, 2014) and whose involved proof-theoretic analysis is due to Eberhard (A feasible theory of truth over combinatory logic, 2014). The results of this paper were first announced in (Eberhard and Strahm, Bull Symb Log 18(3):474–475, 2012).

Formato

application/pdf

Identificador

http://boris.unibe.ch/70703/1/accepted.pdf

Eberhard, Sebastian; Strahm, Thomas Adrian (2015). Unfolding Feasible Arithmetic and Weak Truth. In: Achourioti, Theodora; Galinon, Henri; Martínez Fernández, José; Fujimoto, Kentaro (eds.) Unifying the Philosophy of Truth. Logic, Epistemology, and the Unity of Science: Vol. 36 (pp. 153-167). Dordrecht: Springer Netherlands 10.1007/978-94-017-9673-6_7 <http://dx.doi.org/10.1007/978-94-017-9673-6_7>

doi:10.7892/boris.70703

info:doi:10.1007/978-94-017-9673-6_7

urn:isbn:978-94-017-9672-9

Idioma(s)

eng

Publicador

Springer Netherlands

Relação

http://boris.unibe.ch/70703/

Direitos

info:eu-repo/semantics/openAccess

Fonte

Eberhard, Sebastian; Strahm, Thomas Adrian (2015). Unfolding Feasible Arithmetic and Weak Truth. In: Achourioti, Theodora; Galinon, Henri; Martínez Fernández, José; Fujimoto, Kentaro (eds.) Unifying the Philosophy of Truth. Logic, Epistemology, and the Unity of Science: Vol. 36 (pp. 153-167). Dordrecht: Springer Netherlands 10.1007/978-94-017-9673-6_7 <http://dx.doi.org/10.1007/978-94-017-9673-6_7>

Palavras-Chave #000 Computer science, knowledge & systems #510 Mathematics
Tipo

info:eu-repo/semantics/bookPart

info:eu-repo/semantics/publishedVersion

PeerReviewed