860 resultados para Topological Spaces


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this thesis we investigate some problems in set theoretical topology related to the concepts of the group of homeomorphisms and order. Many problems considered are directly or indirectly related to the concept of the group of homeomorphisms of a topological space onto itself. Order theoretic methods are used extensively. Chapter-l deals with the group of homeomorphisms. This concept has been investigated by several authors for many years from different angles. It was observed that nonhomeomorphic topological spaces can have isomorphic groups of homeomorphisms. Many problems relating the topological properties of a space and the algebraic properties of its group of homeomorphisms were investigated. The group of isomorphisms of several algebraic, geometric, order theoretic and topological structures had also been investigated. A related concept of the semigroup of continuous functions of a topological space also received attention

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lecture notes in LaTex

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lecture notes in PDF

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lecture notes in PDF

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lecture notes in LaTex

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we prove that gradient-like semigroups (in the sense of Carvalho and Langa (2009 J. Diff. Eqns 246 2646-68)) are gradient semigroups (possess a Lyapunov function). This is primarily done to provide conditions under which gradient semigroups, in a general metric space, are stable under perturbation exploiting the known fact (see Carvalho and Langa (2009 J. Diff. Eqns 246 2646-68)) that gradient-like semigroups are stable under perturbation. The results presented here were motivated by the work carried out in Conley (1978 Isolated Invariant Sets and the Morse Index (CBMS Regional Conference Series in Mathematics vol 38) (RI: American Mathematical Society Providence)) for groups in compact metric spaces (see also Rybakowski (1987 The Homotopy Index and Partial Differential Equations (Universitext) (Berlin: Springer)) for the Morse decomposition of an invariant set for a semigroup on a compact metric space).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Let G be a group. We give some formulas for the first group homology and cohomology of a group G with coefficients in an arbitrary G-module (Z) over tilde. More explicit calculations are done in the special cases of free groups, abelian groups and nilpotent groups. We also perform calculations for certain G-module M, by reducing it to the case where the coefficient is a G-module (Z) over tilde. As a result of the well known equalities H-1(X, M) = H-1(pi(1)(X), M) and H-1(X, M) = H-1(pi(1) (X), M), for any G-module M, we are able to calculate the first homology and cohomology groups of topological spaces with certain local system of coefficients.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We give a thorough account of the various equivalent notions for \sheaf" on a locale, namely the separated and complete presheaves, the local home- omorphisms, and the local sets, and to provide a new approach based on quantale modules whereby we see that sheaves can be identi¯ed with certain Hilbert modules in the sense of Paseka. This formulation provides us with an interesting category that has immediate meaningful relations to those of sheaves, local homeomorphisms and local sets. The concept of B-set (local set over the locale B) present in [3] is seen as a simetric idempotent matrix with entries on B, and a map of B-sets as de¯ned in [8] is shown to be also a matrix satisfying some conditions. This gives us useful tools that permit the algebraic manipulation of B-sets. The main result is to show that the existing notions of \sheaf" on a locale B are also equivalent to a new concept what we call a Hilbert module with an Hilbert base. These modules are the projective modules since they are the image of a free module by a idempotent automorphism On the ¯rst chapter, we recall some well known results about partially ordered sets and lattices. On chapter two we introduce the category of Sup-lattices, and the cate- gory of locales, Loc. We describe the adjunction between this category and the category Top of topological spaces whose restriction to spacial locales give us a duality between this category and the category of sober spaces. We ¯nish this chapter with the de¯nitions of module over a quantale and Hilbert Module. Chapter three concerns with various equivalent notions namely: sheaves of sets, local homeomorphisms and local sets (projection matrices with entries on a locale). We ¯nish giving a direct algebraic proof that each local set is isomorphic to a complete local set, whose rows correspond to the singletons. On chapter four we de¯ne B-locale, study open maps and local homeo- morphims. The main new result is on the ¯fth chapter where we de¯ne the Hilbert modules and Hilbert modules with an Hilbert and show this latter concept is equivalent to the previous notions of sheaf over a locale.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Our objective in this paper is to prove an Implicit Function Theorem for general topological spaces. As a consequence, we show that, under certain conditions, the set of the invertible elements of a topological monoid X is an open topological group in X and we use the classical topological group theory to conclude that this set is a Lie group.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Matemática Universitária - IGCE

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Matemática Universitária - IGCE

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Matemática Universitária - IGCE

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The global attractor of a gradient-like semigroup has a Morse decomposition. Associated to this Morse decomposition there is a Lyapunov function (differentiable along solutions)-defined on the whole phase space- which proves relevant information on the structure of the attractor. In this paper we prove the continuity of these Lyapunov functions under perturbation. On the other hand, the attractor of a gradient-like semigroup also has an energy level decomposition which is again a Morse decomposition but with a total order between any two components. We claim that, from a dynamical point of view, this is the optimal decomposition of a global attractor; that is, if we start from the finest Morse decomposition, the energy level decomposition is the coarsest Morse decomposition that still produces a Lyapunov function which gives the same information about the structure of the attractor. We also establish sufficient conditions which ensure the stability of this kind of decomposition under perturbation. In particular, if connections between different isolated invariant sets inside the attractor remain under perturbation, we show the continuity of the energy level Morse decomposition. The class of Morse-Smale systems illustrates our results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Iterative Closest Point algorithm (ICP) is commonly used in engineering applications to solve the rigid registration problem of partially overlapped point sets which are pre-aligned with a coarse estimate of their relative positions. This iterative algorithm is applied in many areas such as the medicine for volumetric reconstruction of tomography data, in robotics to reconstruct surfaces or scenes using range sensor information, in industrial systems for quality control of manufactured objects or even in biology to study the structure and folding of proteins. One of the algorithm’s main problems is its high computational complexity (quadratic in the number of points with the non-optimized original variant) in a context where high density point sets, acquired by high resolution scanners, are processed. Many variants have been proposed in the literature whose goal is the performance improvement either by reducing the number of points or the required iterations or even enhancing the complexity of the most expensive phase: the closest neighbor search. In spite of decreasing its complexity, some of the variants tend to have a negative impact on the final registration precision or the convergence domain thus limiting the possible application scenarios. The goal of this work is the improvement of the algorithm’s computational cost so that a wider range of computationally demanding problems from among the ones described before can be addressed. For that purpose, an experimental and mathematical convergence analysis and validation of point-to-point distance metrics has been performed taking into account those distances with lower computational cost than the Euclidean one, which is used as the de facto standard for the algorithm’s implementations in the literature. In that analysis, the functioning of the algorithm in diverse topological spaces, characterized by different metrics, has been studied to check the convergence, efficacy and cost of the method in order to determine the one which offers the best results. Given that the distance calculation represents a significant part of the whole set of computations performed by the algorithm, it is expected that any reduction of that operation affects significantly and positively the overall performance of the method. As a result, a performance improvement has been achieved by the application of those reduced cost metrics whose quality in terms of convergence and error has been analyzed and validated experimentally as comparable with respect to the Euclidean distance using a heterogeneous set of objects, scenarios and initial situations.