Homologia singular
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
11/06/2014
11/06/2014
08/10/2011
|
Resumo |
Pós-graduação em Matemática Universitária - IGCE A Topologia Algébrica descreve a estrutura geométrica de um espaço topológico, associando a ele um sistema algébrico, geralmente um grupo ou uma sequência de grupos. À funções contínuas entre espaços topológicos correspondem homomorfismos entre grupos associados a estes espaços. Nesta dissertação, mostraremos que a homologia singular com coeficientes em Z, constituem uma teoria de homologia, baseados nos axiomas de Samuel Eilenberg e Norman Steenrod. Apresentaremos, também, resultados clássicos como a não existência de um homeomorfismo entre Rm e Rn, para m diferente de n, o teorema do ponto fixo de Brouwer e a não existência de campo vetorial não-nulo nas esferas de dimensão par The Algebraic Topology describes the geometrical structure of a topological space by associating an algebraic system, usually a group or a sequence of groups. To continuous functions between topological spaces correspond homomorphisms between groups associated to these spaces. In this work we will show that Singular Homology with Z-coe cients constitutes a homology theory, based on the Eilenberg-Steenrod Axioms. We also present some classical results as the nonexistence of a homeomorphism between Rm and Rn, if m ≠ n, the Brouwer's xed point theorem and the nonexistence of a non-zero vector eld in even dimension spheres |
Formato |
154 p. : il. |
Identificador |
RUY, Adriana Cristiane. Homologia singular. 2011. 154 p. Dissertação - (mestrado) - Universidade Estadual Paulista, Instituto de Geociências e Ciências Exatas, 2011. http://hdl.handle.net/11449/94343 000675976 ruy_ac_me_rcla.pdf 33004137065P9 |
Idioma(s) |
por |
Publicador |
Universidade Estadual Paulista (UNESP) |
Direitos |
openAccess |
Palavras-Chave | #Topologia algebrica #Axiomas de Eilenberg-Steenrod #Algebraic topology #Eilenberg-Steenrod axiom's |
Tipo |
info:eu-repo/semantics/masterThesis |