Espaços vetoriais e topológicos de intervalos generalizados com alguns conceitos de cálculo e otimização intervalar


Autoria(s): Costa, Tiago Mendonça da
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

10/11/2014

10/11/2014

29/05/2014

Resumo

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Pós-graduação em Matemática - IBILCE

This work presents a method to endow the generalized interval set M = I(R) ∪ I(R); where I(R) = f[a1; a2] : a1 a2 and a1; a2 2 Rg and I(R) = f[a1; a2] : [a2; a1] 2 I(R)g; with some different structures, such as algebraic, topological, and metric. We also equip M with order relations. Actually, we did this in a more general context because we worked in Mn = M M M for n 2 N: We formulated interval optimization problems and related them to classic multi-objective optimization problems. We presented a version of the mini-max Theorem in the interval context, and also developed concepts of calculus on the generalized interval space which are used to find the attainable state set of a classic differential inclusion under some given conditions

Neste trabalho apresentamos um método para munir o conjunto intervalar generalizado M = I(R) ∪ I(R); sendo I(R) = f[a1; a2] : a1 a2 e a1; a2 2 Rg e I(R) = f[a1; a2] : [a2; a1] 2 I(R)g; com algumas diferentes estruturas, como algébrica, topológica e métrica. Também equipamos M com relações de ordem. Na verdade, fizemos isso em um contexto mais geral, pois trabalhamos em Mn = M M M para n 2 N: Nós formulamos problemas de otimização intervalar e relacionamos esses problemas com clássicos problemas de otimização multiobjetivo. Além disso, apresentamos uma versão do Teorema minmax no contexto intervalar e também desenvolvemos conceitos do cálculo em espaços intervalar generalizado, os quais são usados para encontrar o conjunto dos estados atingíveis de um inclusão diferencial clássica sob algumas condições dadas

Formato

75 f. : il.

Identificador

COSTA, Tiago Mendonça da. Espaços vetoriais e topológicos de intervalos generalizados com alguns conceitos de cálculo e otimização intervalar. 2014. 75 f. Tese (doutorado) - Universidade Estadual Paulista Julio de Mesquita Filho, Instituto de Biociências, Letras e Ciências Exatas, 2014.

http://hdl.handle.net/11449/110603

000789915

000789915.pdf

33004153071P0

Idioma(s)

por

Publicador

Universidade Estadual Paulista (UNESP)

Direitos

openAccess

Palavras-Chave #Álgebra linear #Espaços topologicos #Espaços vetoriais #Otimização matematica #Topological spaces
Tipo

info:eu-repo/semantics/doctoralThesis