972 resultados para Teaching chemistry
Resumo:
Five Canadian high school Chemistry classes in one school, taught by three different teachers, studied the concepts of dynamic chemical equilibria and Le Chatelier’s Principle. Some students received traditional teacher-led explanations of the concept first and used an interactive scientific visualisation second, while others worked with the visualisation first and received the teacher-led explanation second. Students completed a test of their conceptual understanding of the relevant concepts prior to instruction, after the first instructional session and at the end of instruction. Data on students’ academic achievement (highest, middle or lowest third of the class on the mid-term exam) and gender were also collected to explore the relationship between these factors, conceptual development and instructional sequencing. Results show, within this context at least, that teaching sequence is not important in terms of students’ conceptual learning gains.
Resumo:
Esta guía práctica tiene como objetivo facilitar recursos a los docentes de la etapa de secundaria en su objetivo de enseñar a los alumnos las bases para el estudio y comprensión de la química. Está escrito en colaboración con la Association for Science Education (ASE) con la finalidad de difundir las buenas prácticas y nuevas ideas entre los profesores de ciencias y contribuir, así, a la mejora de la enseñanza.
Resumo:
This work is part of a study that focused on analyzing the contributions of didactic activities related to scientific language rhetoric characteristics aimed at developing students' abilities to identify such characteristics in chemistry scientific texts and critical reading of those texts. In this study, we present the theoretical basis adopted to determine the scientific discourse characteristics and for the production of the didactic material used in those activities. Latour, Coracini and Campanario studies on persuasive rhetorical strategies present in scientific articles aided the production of such material.
Resumo:
The methodological approach a teacher uses in the competence teaching-learning process determines the way students learn. Knowledge can be acquired from a series of perspectives, mainly: “know-what” (concept), where facts and descriptions of (natural or social) phenomena are pursued; “know-how” (procedure), where methods and procedures for their application are described; and “know-why” (competence), where general principles and laws that explain both the facts and their applications are sought. As all the three cases are interconnected, the boundaries between them are not fully clear and their application uses shared elements. In any case, the depth of student’s acquired competences will be directly affected by the teaching-learning perspective, traditionally aiming to a “know-why” approach for full competence acquisition. In this work, we discuss a suitable teaching-learning methodology for evaluating whether a “know-how”, “know-what” or combined approach seems better for enhancing competence learning in students. We exemplify the method using a selection of formative activities from the Physical Chemistry area in the Grades of Chemistry and Chemical Engineering.
Resumo:
Competences have become a standard learning outcome in present university education within the European Higher Education Area (EHEA). In this regard, updated tools for their assessment have turned out essential in this new teaching-learning paradigm. Among them, one of the most promising tools is the “learner´s portfolio”, which is based on the gathering and evaluation of a range of evidences from the student, which provides a wider and more realistic view of his/her competence acquisition. Its appropriate use as a formative (continuous) assessment instrument allows a deeper appraisal of student´s learning, provided it does not end up as another summative (final) evaluation tool. In this contribution we propose the use of the portfolio as a unifying assessment tool within a university department (Physical Chemistry), exemplifying how the portfolio could yield both personalized student reports and averaged area reports on competence acquisition. A proposed stepwise protocol is given to organize the individual competence reports and estimate the global competence level following a bottom-up approach (i.e. ranging from the class group, subject, grade, and academic course).
Resumo:
Current views of the nature of knowledge and of learning suggest that instructional approaches in science education pay closer attention to how students learn rather than on teaching. This study examined the use of approaches to teaching science based on two contrasting perspectives in learning, social constructivist and traditional, and the effects they have on students' attitudes and achievement. Four categories of attitudes were measured using the Upper Secondary Attitude Questionnaire: Attitude towards school, towards the importance of science, towards science as a career, and towards science as a subject in school. Achievement was measured by average class grades and also with a researcher/teacher constructed 30-item test that involved three sub-scales of items based on knowledge, and applications involving near-transfer and far-transfer of concepts. The sample consisted of 202 students in nine intact classrooms in chemistry at a large high school in Miami, Florida, and involved two teachers. Results were analyzed using a two-way analysis of covariance (ANCOVA) with a pretest in attitude as the covariate for attitudes and prior achievement as the covariate for achievement. A comparison of the adjusted mean scores was made between the two groups and between females and males. ^ With constructivist-based teaching, students showed more favorable attitude towards science as a subject, obtained significantly higher scores in class achievement, total achievement and achievement on the knowledge sub-scale of the knowledge and application test. Students in the traditional group showed more favorable attitude towards school. Females showed significantly more positive attitude towards the importance of science and obtained significantly higher scores in class achievement. No significant interaction effects were obtained for method of instruction by gender. ^ This study lends some support to the view that constructivist-based approaches to teaching science is a viable alternative to traditional modes of teaching. It is suggested that in science education, more consideration be given to those aspects of classroom teaching that foster closer coordination between social influences and individual learning. ^
Resumo:
The academic activities carried out at the School of Chemistry make indispensable to develop actions oriented toward the consolidation of a reagent and residue management system, especially in the teaching laboratories. The project “Management of reagents and residues in the teaching laboratories of the School of Chemistry” works under the Green Chemistry values which designs products and chemical processes that reduce or eliminate the use and production of dangerous substances, to benefit the environment. With a preventive vision, a change from the laboratory practices is looked to select those with less environmental impact. Additionally, residue quantification is made and its management protocols are developed for each practice. The project has several stages: diagnose, action implementation, student, teacher and administration personnel training and evaluation during the process and at the end of it. The article describes methodological aspects of the project operation emphasizing on reagent and residue quantification through flow diagrams.
Resumo:
Nationally and internationally, context-based programs have been implemented in an attempt to engage students in chemistry through connecting the canonical science with the real-world. In Queensland, a context-based approach to chemistry was trialled in selected schools from 2002 but there is little research that investigates how students learn in a context-based setting. This paper presents one significant finding from an ethnographic study that explored the learning that occurred in an 11th grade context-based chemistry classroom in Queensland. The study found that by providing students with the opportunity to write, fluid transitions (or to-ing and fro-ing) between concepts and context were an outcome of context-based learning.
Resumo:
Explanations of the role of analogies in learning science at a cognitive level are made in terms of creating bridges between new information and students’ prior knowledge. In this empirical study of learning with analogies in an 11th grade chemistry class, we explore an alternative explanation at the "social" level where analogy shapes classroom discourse. Students in the study developed analogies within small groups and with their teacher. These classroom interactions were monitored to identify changes in discourse that took place through these activities. Beginning from socio-cultural perspectives and hybridity, we investigated classroom discourse during analogical activities. From our analyses, we theorized a merged discourse that explains how the analog discourse becomes intertwined with the target discourse generating a transitional state where meanings, signs, symbols, and practices are in flux. Three categories were developed that capture how students intertwined the analog and target discourses—merged words, merged utterances/sentences, and merged practices.
Resumo:
Scientific visualisations such as computer-based animations and simulations are increasingly a feature of high school science instruction. Visualisations are adopted enthusiastically by teachers and embraced by students, and there is good evidence that they are popular and well received. There is limited evidence, however, of how effective they are in enabling students to learn key scientific concepts. This paper reports the results of a quantitative study conducted in Australian physics and chemistry classrooms. In general there was no statistically significant difference between teaching with and without visualisations, however there were intriguing differences around student sex and academic ability.
Resumo:
Concerns regarding students' learning and reasoning in chemistry classrooms are well documented. Students' reasoning in chemistry should be characterized by conscious consideration of chemical phenomenon from laboratory work at macroscopic, molecular/sub-micro and symbolic levels. Further, students should develop metacognition in relation to such ways of reasoning about chemistry phenomena. Classroom change eliciting metacognitive experiences and metacognitive reflection is necessary to shift entrenched views of teaching and learning in students. In this study, Activity Theory is used as the framework for intepreting changes to the rules/customs and tools of the activity systems of two different classes of students taught by the same teacher, Frances, who was teaching chemical equilibrium to those classes in consecutive years. An interpretive methodolgy involving multiple data sources was employed. Frances explicitly changed her pedagogy in the second year to direct students attention to increasingly consider chemical phenomena at the molecular/sub-micro level. Additonally, she asked students not to use the textbook until toward the end of the equilibrium unit and sought to engage them in using their prior knowledge of chemistry to understand their observations from experiments. Frances' changed pedagogy elicited metacognitive experiences and reflection in students and challenged them to reconsider their metacognitive beliefs about learning chemistry and how it might be achieved. While teacher change is essential for science education reform, students are not passive players in the change efforts and they need to be convinced of the viability of teacher pedagogical change in the context of their goals, intentions, and beliefs.
Resumo:
This paper arises from our concern for the level of teaching of engineering drawing at tertiary institutions in Australia. Little attention is paid to teaching hand drawing and tolerancing. Teaching of engineering drawing is usually limited to computer-aided design (CAD) using AutoCAD or one of the solid-modelling packages. As a result, many engineering graduates have diffi culties in understanding how views are produced in different projection angles, are unable to produce engineering drawings of professional quality, or read engineering drawings, and unable to select fits and limits or surface roughness. In the Faculty of Built Environment and Engineering at the Queensland University of Technology new approaches to teaching engineering drawing have been introduced. In this paper the results of these innovative approaches are examined through surveys and other research methods.
Resumo:
The Chemistry Discipline Network was funded in mid-2011, with the aim of improving communication between chemistry academics in Australia. In our first year of operation, we have grown to over 100 members, established a web presence, and produced substantial mapping reports on chemistry teaching in Australia. We are now working on the definition of standards for a chemistry degree based on the Threshold Learning Outcomes published by the Learning and Teaching Academic Standards Project.