888 resultados para Strain-induced precipitation
Resumo:
In-plane optical anisotropy (IPOA) in (001) GaAs/AlGaAs superlattice induced by uniaxial strain has been investigated by reflectance difference spectroscopy (RDS). Uniaxial strain on the order of 10(-4) was introduced by bending a strip sample with a stress apparatus. The IPOA of all interband transitions shows a linear dependence on strain. The birefringence and dichroism spectra induced by strain are obtained by RDS on the basis of a three-phase model, which is in good agreement with the reported results. (c) 2006 American Institute of Physics.
Resumo:
Nation Natural Science Foundation of China 50672079 60676027 60837001 60776007; National Basic Research Program of China (973 Program) 2007CB613404; China-MOST International Sci & Tech Cooperation and Exchange 2008DFA51230
Resumo:
Strain relaxation in initially flat SiGe film on Si(1 0 0) during rapid thermal annealing is studied. The surface roughens after high-temperature annealing, which has been attributed to the intrinsic strain in the epilayers. It is interesting to find that high-temperature annealing also results in roughened interface, indicating the occurrence of preferential interdiffusion. It is suggested that the roughening at the surface makes the intrinsic strain in the epilayer as well as the substrate unequally distributed, causing preferential interdiffusion at the SiGe/Si interface during high-temperature annealing. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Atomic force microscopy and photoluminescence spectroscopy (PL) has been used to study asymmetric bilayer InAs quantum dot (QD) structures grow by molecular-beam epitaxy on GaAs (001) substrates. The two InAs layers were separated by a 7-nm-thick GaAs spacer layer and were grown at different substrate temperature. We took advantage of the intrinsic nonuniformity of the molecular beams to grow the seed layer with an average InAs coverage of 2.0 ML. Then the seed layer thickness could be divided into three areas: below, around and above the critical thickness of the 2D-3D transition along the 11101 direction of the substrate. Correspondingly, the nucleation mechanisms of the upper InAs layer (UIL) could be also divided into three areas: temperature-controlled, competition between temperature-controlled and strain-induced, and strain-induced (template-controlled) nucleation. Small quantum dots (QDs) with a large density around 5 x 10(10) cm(-2) are found in the temperature-controlled nucleation area. The QD size distributions undergo a bimodal to a unimodal transition with decreasing QD densities in the strain-induced nucleation area, where the QD densities vary following that of the seed layer (templating effect). The optimum QD density with the UIL thickness fixed at 2.4 ML is shown to be around 1.5 x 10(10) cm(-2), for which the QD size distribution is unimodal and PL emission peaks at the longest wavelength. The QDs in the in-between area exhibit a broad size distribution with small QDs and strain-induced large QDs coexisting.
Resumo:
Strain relaxation in initially flat SiGe film on Si(1 0 0) during rapid thermal annealing is studied. The surface roughens after high-temperature annealing, which has been attributed to the intrinsic strain in the epilayers. It is interesting to find that high-temperature annealing also results in roughened interface, indicating the occurrence of preferential interdiffusion. It is suggested that the roughening at the surface makes the intrinsic strain in the epilayer as well as the substrate unequally distributed, causing preferential interdiffusion at the SiGe/Si interface during high-temperature annealing. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Nano magnetic oxides are promising candidates for high density magnetic storage and other applications. Nonspherical mesoscopic iron oxide particles are also candidate materials for studying the shape, size and strain induced modifications of various physical properties viz. optical, magnetic and structural. Spherical and nonspherical iron oxides having an aspect ratio, ~2, are synthesized by employing starch and ethylene glycol and starch and water, respectively by a novel technique. Their optical, structural, thermal and magnetic properties are evaluated. A red shift of 0⋅24 eV is observed in the case of nonspherical particles when compared to spherical ones. The red shift is attributed to strain induced changes in internal pressure inside the elongated iron oxide particles. Pressure induced effects are due to the increased overlap of wave functions. Magnetic measurements reveal that particles are superparamagnetic. The marked increase in coercivity in the case of elongated particles is a clear evidence for shape induced anisotropy. The decreased specific saturation magnetization of the samples is explained on the basis of weight percentage of starch, a nonmagnetic component and is verified by TGA and FTIR studies. This technique can be modified for tailoring the aspect ratio and these particles are promising candidates for drug delivery and contrast enhancement agents in magnetic resonance imaging
Resumo:
Using a physically based model, the microstructural evolution of Nb microalloyed steels during rolling in SSAB Tunnplåt’s hot strip mill was modeled. The model describes the evolution of dislocation density, the creation and diffusion of vacancies, dynamic and static recovery through climb and glide, subgrain formation and growth, dynamic and static recrystallization and grain growth. Also, the model describes the dissolution and precipitation of particles. The impeding effect on grain growth and recrystallization due to solute drag and particles is accounted for. During hot strip rolling of Nb steels, Nb in solid solution retards recrystallization due to solute drag and at lower temperatures strain-induced precipitation of Nb(C,N) may occur which effectively retard recrystallization. The flow stress behavior during hot rolling was calculated where the mean flow stress values were calculated using both the model and measured mill data. The model showed that solute drag has an essential effect on recrystallization during hot rolling of Nb steels.
Resumo:
Introduction: HMG-CoA reductase inhibitors are the most frequently prescribed drugs for treatment of lipid imbalance, but they have side effects, such as myopathy. Our aim was to assess the effect of simvastatin on the inflammatory process induced by skeletal muscle injury. Methods: Rats were divided into experimental groups [control group, simvastatin (20 mg/kg) group, group treated with simvastatin (20 mg/kg) and subjected to injury, and group subjected to injury only]. Histological analysis and analyses of creatine kinase activity and C-reactive protein were performed. Results: Animals treated with simvastatin exhibited significantly greater morphological and structural skeletal muscle damage in comparison to the control group and injured animals without treatment. Conclusions: Although simvastatin has a small anti-inflammatory effect in the early stage after a muscle strain injury, the overall picture is negative, as simvastatin increases the extent of damage to muscle morphology. Further studies are needed. Muscle Nerve 46: 908-913, 2012
Resumo:
Muscle strains are among the most prevalent causes for athletes absence from sport activities. Low-level laser therapy (LLLT) has recently emerged as a potential contender to nonsteroidal anti-inflammatory drugs in muscle strain treatment. In this work we investigated effects of LLLT and diclofenac on functional outcomes in the acute stage after muscle strain injury in rats. Muscle strain was induced by overloading the tibialis anterior muscle of rats during anesthesia. The injured groups received either no treatment, or a single treatment with diclofenac 30 min prior to injury, or LLLT (810 nm, 100 mW) with doses of 1, 3, 6 or 9 J, at 1 h after injury. Functional outcome measures included a walking index and assessment of electrically induced muscle performance. All treatments (except 9 J LLLT) significantly improved the walking index 12 h postinjury compared with the untreated group. The 3 J group also showed a significantly better walking index than the drug group. All treatments significantly improved muscle performance at 6 and 12 h. LLLT dose of 3 J was as effective as the pharmacological agent in improving functional outcomes in the early phase after a muscle strain injury in rats.
Resumo:
We perform density functional calculations to investigate the structure of the intermetallic alloy FeRh under epitaxial strain. Bulk FeRh exhibits a metamagnetic transition from a low-temperature antiferromagnetic (AFM) phase to a ferromagnetic phase at 350 K, and its strain dependence is of interest for tuning the transition temperature to the room-temperature operating conditions of typical memory devices. We find an unusually strong dependence of the structural energetics on the choice of exchange-correlation functional, with the usual local density approximation yielding the wrong ground-state structure, and generalized gradient (GGA) extensions being in better agreement with the bulk experimental structure. Using the GGA we show the existence of a metastable face-centered-cubic-like AFM structure that is reached from the ground-state body-centered-cubic-like AFM structure by following the epitaxial Bain path. We show that the behavior is well described using nonlinear elasticity theory, which captures the softening and eventual sign change of the orthorhombic shear modulus under compressive strain, consistent with this structural instability. Finally, we predict the existence of an additional unit-cell-doubling lattice instability, which should be observable at low temperature.
Resumo:
The well-width dependence of in-plane optical anisotropy (IPOA) in (001) GaAs/AlxGa1-xAs quantum wells induced by in-plane uniaxial strain and interface asymmetry has been studied comprehensively. Theoretical calculations show that the IPOA induced by in-plane uniaxial strain and interface asymmetry exhibits much different well-width dependence. The strain-induced IPOA is inversely proportional to the energy spacing between heavy- and light-hole subbands, so it increases with the well width. However, the interface-related IPOA is mainly determined by the probability that the heavy- and light-holes appear at the interfaces, so it decreases with the well width. Reflectance difference spectroscopy has been carried out to measure the IPOA of (001) GaAs/AlxGa1-xAs quantum wells with different well widths. Strain- and interface-induced IPOA have been distinguished by using a stress apparatus, and good agreement with the theoretical prediction is obtained. The anisotropic interface potential parameters are also determined. In addition, the energy shift between the interface- and strain-induced 1H1E reflectance difference (RD) structures, and the deviation of the 1L1E RD signal away from the prediction of the calculation model have been discussed.
Resumo:
The hexagonal nanomembranes of the group III-nitrides are a subject of interest due to their novel technological applications. In this paper, we investigate the strain- and electric field-induced modulation of their band gaps in the framework of density functional theory. For AlN, the field-dependent modulation of the bandgap is found to be significant whereas the strain-induced semiconductor-metal transition is predicted for GaN. A relatively flat conduction band in AlN and GaN nanomembranes leads to an enhancement of their electronic mobility compared to that of their bulk counterparts. © 2013 IOP Publishing Ltd.