985 resultados para SILICA GLASS


Relevância:

70.00% 70.00%

Publicador:

Resumo:

A colorless transparent, blue green emission material was fabricated by sintering porous glass impregnated with copper ions. The emission spectral profile obtained from Cu+ -doped high silica glass (HSG) by 267-mn monochromatic light excitation matches that obtained by pumping with an 800-nm femtosecond laser, indicating that the emissions in both cases come from an identical origin. The upconversion emission excited by 800-nm femtosecond laser is considered to be a three-photon excitation process. A tentative scheme of upconverted emission from Cu+ -doped HSG was also proposed. The glass materials presented herein are expected to find application in lamps, high density optical storage, and three-dimensional color displays.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A new method was used to prepare erbium-doped high silica (SiO2% > 96%) glasses by sintering nanoporous glasses. The concentration of erbium ions in high silica glasses can be considerably more than that in silica glasses prepared by using conventional methods. The fluorescence of 1532 nm has an FWHM (Full Wave at Half Maximum) of 50 nm, wider than 35 nm of EDSFA (erbium-doped silica fiber amplifer), and hence the glass possesses potential application in broadband fiber amplifiers. The Judd-Ofelt theoretical analysis reflects that the quantum efficiency of this erbium-doped glass is about 0.78, although the erbium concentration in this glass (6 x 103) is about twenty times higher than that in silica glass. These excellent characteristics of Er-doped high silica glass will be conducive to its usage in optical amplifiers and microchip lasers.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Bulk samples of tellurite glass with composition 75TeO(2)-20ZnO-5Na(2)O (TZN) were fabricated by melting and quenching techniques. In order to improve the surface quality of optical fiber preform made with this tellurite glass, the authors developed a multistage etching process. The relationship between successive etching treatments and roughness of the TZN glass surface was probed by using an atomic force microscope. The results demonstrate that this multistage etching method effectively improves this tellurite glass surface smoothness to a level comparable with that of a reference silica glass slide, and the corresponding chemical micromechanisms and fundamentals are discussed and confirmed by atomic force microscopy, potentially contributing to the development of multicomponent soft glass fibers and devices. (C) 2010 American Vacuum Society. [DOI: 10.1116/1.3437017]

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Erbium-doped silica glasses were made by sol-gel process. Intensive photoluminescence (PL) spectra from the Er-doped silica glasses at room temperature were measured. A broadband peak at 1535 ma, corresponding to the I-4(13/2)-I-4(15/2) transition, its full width at half-maximum (FWHM) of 10 nm, and a shoulder at 1546 nm in the PL spectra were observed. At lower temperatures, main line of 1535 nm and another line of 1552 Mn instead of 1546 nm appear. So two types of luminescence centers must exist in the samples at different temperature. The intensity of main line does not decrease obviously with increasing temperature. By varying the Er ion concentration in the range of 0.2 wt% - 5wt%, the highest photoluminescence intensity was obtained at 0.2wt% erbium doped concentration. Luminescence intensity decreases with increasing erbium concentration. Cooperative upconversion was used to explain the concentration quenching of luminescence from silica glass with high erbium concentration. Extended X-ray absorption fine structure measurements were carried out. It was found that the majority of the erbium impurities in the glasses have a local structure of eight first neighbor oxygen atoms at a mean distance of 0.255 nm, which is consistent with the typical coordination structure of rare earth ion.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Department of Marine Geology & Geophysics, Cochin University of Science & Technology

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The utilization of borate mineral wastes with glass-ceramic technology was first time studied and primarily not investigated combinations of wastes were incorporated into the research. These wastes consist of; soda lime silica glass, meat bone and meal ash and fly ash. In order to investigate possible and relevant application areas in ceramics, kaolin clay, an essential raw material for ceramic industry was also employed in some studied compositions. As a result, three different glass-ceramic articles obtained by using powder sintering method via individual sintering processes. Light weight micro porous glass-ceramic from borate mining waste, meat bone and meal ash and kaolin clay was developed. In some compositions in related study, soda lime silica glass waste was used as an additive providing lightweight structure with a density below 0.45 g/cm3 and a crushing strength of 1.8±0.1 MPa. In another study within the research, compositions respecting the B2O3–P2O5–SiO2 glass-ceramic ternary system were prepared from; borate wastes, meat bone and meal ash and soda lime silica glass waste and sintered up to 950ºC. Low porous, highly crystallized glass-ceramic structures with density ranging between 1.8 ± 0,7 to 2.0 ± 0,3 g/cm3 and tensile strength ranging between 8,0 ± 2 to 15,0 ± 0,5 MPa were achieved. Lastly, diopside - wollastonite (SiO2-Al2O3-CaO )glass-ceramics from borate wastes, fly ash and soda lime silica glass waste were successfully obtained with controlled rapid sintering between 950 and 1050ºC. The wollastonite and diopside crystal sizes were improved by adopting varied combinations of formulations and heating rates. The properties of the obtained materials show; the articles with a uniform pore structure could be useful for thermal and acoustic insulations and can be embedded in lightweight concrete where low porous glass-ceramics can be employed as building blocks or additive in cement and ceramic industries.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Natural nanopatterned surfaces (nNPS) present on insect wings have demonstrated bactericidal activity [1, 2]. Fabricated nanopatterned surfaces (fNPS) derived by characterization of these wings have also shown superior bactericidal activity [2]. However bactericidal NPS topologies vary in both geometry and chemical characteristics of the individual features in different insects and fabricated surfaces, rendering it difficult to ascertain the optimum geometrical parameters underling bactericidal activity. This situation calls for the adaptation of new and emerging techniques, which are capable of fabricating and characterising comparable structures to nNPS from biocompatible materials. In this research, CAD drawn nNPS representing an area of 10 μm x10 μm was fabricated on a fused silica glass by Nanoscribe photonic professional GT 3D laser lithography system using two photon polymerization lithography. The glass was cleaned with acetone and isopropyl alcohol thrice and a drop of IP-DIP photoresist from Nanoscribe GmbH was cast onto the glass slide prior to patterning. Photosensitive IP-DIP resist was polymerized with high precision to make the surface nanopatterns using a 780 nm wavelength laser. Both moving-beam fixedsample (MBFS) and fixed-beam moving-sample (FBMS) fabrication approaches were tested during the fabrication process to determine the best approach for the precise fabrication of the required nanotopological pattern. Laser power was also optimized to fabricate the required fNPS, where this was changed from 3mW to 10mW to determine the optimum laser power for the polymerization of the photoresist for fabricating FNPS...

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we briefly summarize two typical morphology characteristics of the self-organized void array induced in bulk of fused silica glass by a tightly focused femtosecond laser beam, such as the key role of high numerical aperture in the void array formation and the concentric-circle-like structure indicated by the top view of the void array. By adopting a physical model which combines the nonlinear propagation of femtosecond laser pulses with the spherical aberration effect (SA) at the interface of two mediums of different refractive indices, reasonable agreements between the simulation results and the experimental results are obtained. By comparing the fluence distributions of the case with both SA and nonlinear effects included and the case with only consideration of SA, we suggest that spherical aberration, which results from the refractive index mismatch between air and fused silica glass, is the main reason for the formation of the self-organized void array. (c) 2008 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bi-doped BaF2 crystal was grown by the temperature gradient technique and its spectral properties were investigated. The absorption, emission and excitation spectra were measured at room temperature. Two broadband emissions centered at 1070 and 1500 nm were observed in Bi-doped BaF2 crystal. This extraordinary luminescence should be ascribed to Bi-related centers at distinct sites. We suggest Bi2+ or Bi+ centers adjacent to F vacancy defects are the origins of the observed NIR emissions. (C) 2009 Optical Society of America

Relevância:

60.00% 60.00%

Publicador:

Resumo:

以短的高掺杂浓度的掺铥硅基光纤为增益介质,采用790 nm波长的激光二极管(LD)为抽运源,得到了波长为2 μm的高功率激光输出。当光纤长度为7 cm时,激光器的阈值泵浦功率为135 mW,最大输出功率为1.09 W,斜率效率为9.6%(相对于耦合进光纤的抽运功率)。该激光器的输出稳定性在5%以内。此外,我们还观察分析了工作温度和其他腔结构参量对该激光器工作性能的影响。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

应用Judd-Oflet理论计算了新型掺铒高硅氧玻璃中铒离子的强度参量Ωt(t=2,4,6),Ω2=8.15×10^-20,Ω4=1.43×10^-20,Ω6=1.22×10^-20,相比于其他氧化物玻璃,表现出较大的Ω2,6值,反映了铒离子周围的近邻结构不对称性和Er-O键的离子键成分较高.利用McCumber理论计算得到了能级4I13/2→4I15/2跃迁的受激发射截面为σc=O.51pm^2.这种高硅氧玻璃掺铒离子浓度尽管高于石英光纤的掺杂浓度10倍左右,其荧光寿命和量子效率仍达到6.0ms和66.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report ultrabroad infrared luminescence from Bi-doped aluminogermanate glasses. The infrared luminescence almost covers the whole low loss wavelength region (1200-1650 nm) of silica glass fiber when excited by a diode laser at 980 nm. The full width at half maximum (FWHM) of the luminescence is 510 nm. The luminescence peak can be divided into three Gaussian peaks, and the fluorescence lifetime of the three emissions are 297 mu s, 470 mu s and 1725 mu s, respectively. These fluorescence properties indicate that the glasses are promising material for broadband optical amplifiers. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

abstract {Silica glass is an attractive host matrix for the emission ions of rare earth and transition metal ions because it has small thermal expansion coefficient, strong thermal resistance, large fracture strength and good chemical durability and so on. However, a major obstacle to using it as the host matrix is a phenomenon of concentration quenching. In this paper, we introduces a novel method to restrain the concentration quenching by using a porous glass with SiO2 content > 95% (in mass) and prepare intense fluorescence high-SiO2 glasses and high-SiO2 laser glass. The porous glass with high-SiO2 content was impregnated with rare-earth and transition metal ions, and consequently sintered into a compact non-porous glass in reduction or oxidization atmospheres. Various intense fluorescence glasses with high emission yields, a vacuum ultraviolet-excited intensely luminescent glass, high silica glass containing high concentration of Er3+ ion, ultrabroad infrared luminescent Bi-doped high silica glass and Nd3+-doped silica microchip laser glass were obtained by this method. The porous glass is also favorable for co-impregnating multi-active-ions. It can bring effective energy transferring between various active ions in the glass and increases luminescent intensity and extend range of excitation spectrum. The luminescent active ions-doped high-SiO2 glasses are potential host materials for high power solid-state lasers and new transparent fluorescence materials.}

Relevância:

60.00% 60.00%

Publicador:

Resumo:

为了研制出满足大功率脉冲氙灯技术要求的管壁材料,使用石英玻璃管二步法制备工艺,采用分层制砣技术,把纯石英玻璃和掺铈石英玻璃密切熔合,研制出新型的复合石英玻璃管。研制了几种不同复合比例的复合石英玻璃管,并对其光谱性能和机械性能进行了测试。通过对比实验表明,当纯石英玻璃层和掺铈石英玻璃层的比例合适时,复合石英玻璃管不仅具有吸收小于320nm波长的紫外辐射的性能,而且具有比掺铈石英玻璃管更高的机械强度和抗冲击性能,满足了大功率脉冲氙灯对管壁材料的特定要求。采用复合石英玻璃管制备的大功率脉冲氙灯具有优良的抗冲击性