919 resultados para Respiratory muscles
Resumo:
Introduction: Chagas Disease is a serious public health problem, with 5 million infected individuals in Brazil. Of these, approximately 30% develop chronic Chagas cardiomyopathy (CCC), where the main symptoms are fatigue and dyspnea. Objective: To correlate maximal exercise capacity with pulmonary function, inspiratory muscle strength and quality of life in patients with CCC. Methodology: Twelve individuals suffering from CCC were evaluated (7 men), with a mean age of 54.91± 8.60 years and the following inclusion criteria: functional class II and III according to the New York Heart Association (NYHA); left ventricle ejection fraction below 45%; clinical stability (> 3 months); symptom duration > 1 year, body mass index (BMI) < 35Kg/m2 and non-smokers or ex-smokers with a history of smoking <10 packs/day. All subjects were submitted to spirometry, manometer testing, maximal cardiopulmonary exercise testing (CPX) and a quality of life questionnaire (Minnesota). Results: A negative correlation was observed between VO2máx and MLHFQ scores (r=-0.626; p=0.03) and a positive association with MIP (r=0.713; p=0.009). Positive correlations were also recorded between MIP and spirometric variables [FEV1(r=0.825;p=0.001 ), FVC(r=0.66;p=0.01 and FEF25-75%(r=0.639;p=0.02)]. Conclusion: The present study demonstrated that in patients with CCC: VO2MAX is directly related to inspiratory muscle strength and quality of life, while deteriorating lung function is directly associated with respiratory muscle weakness
Resumo:
Objective: To analyze the effect of arm bracing posture on respiratory muscle strength and pulmonary function in patients with Chronic Obstructive Pulmonary Disease (COPD).Methods: 20 patients with COPD (11 male; 67 +/- 8 years; BMI 24 +/- 3 Kg . m(-2)) were submitted to assessments of Maximal Inspiratory and Expiratory Pressures (MIP and MEP, respectively) and spirometry with and without arm bracing in a random order. The assessment with arm bracing was done on standing position and the height of the support was adjusted at the level of the ulnar styloid process with elbow flexion and trunk anterior inclination of 30 degrees promoting weight discharge in the upper limbs. Assessment without arm bracing was also performed on standing position, however with the arms relaxed alongside the body. The time interval between assessments was one week.Results: MIP, MEP and maximal voluntary ventilation (MW) were higher with arm bracing than without arm bracing (MIP 64 +/- 22 cmH(2)O versus 54 +/- 24 cmH(2)O, p = 0,00001; MEP 104 +/- 37 cmH(2)O versus 92 +/- 37 cmH(2)O, p = 0,00001 and MW 42 +/- 20 L/min versus 38 +/- 20 L/min, p = 0,003). Other variables did not show statistical significant difference.Conclusion: The arm bracing posture resulted in higher capacity to generate force and endurance of the respiratory muscles in patients with COPD. (C) 2009 Published by Elsevier Espana, S.L. on behalf of Sociedade Portuguesa de Pneumologia. All rights reserved.
Resumo:
The restriction of physical fitness is directly related with hypertension and sleep disorders, while the respiratory muscle strength is associated with hypertension, but the literature is scarce regarding its relationship with sleep disorders and particularly with excessive daytime sleepiness. Objectives: To compare physical fitness and strength of respiratory muscles between people with hypertension with excessive daytime sleepiness (EDS) and non EDS people, those who do not feel excessive daytime sleepiness, in addition to relate aerobics resistance and functional mobility of patients. Methods: An observational, analytical and transversal study, evaluated 32 elderly with hypertension, divided into two groups (EDS and non EDS), in which the following topics were measured; respiratory muscular strength, functional fitness, level of physical activity, level of excessive daytime sleepiness, quality of sleep and intensity of the patients snoring. Results: There was a significant difference in the level of EDS (P=0,00) and quality of sleep (p=0,03), however, the data related to snoring intensity (p=0,18), maximum inspiratory pressure PImax (p=0,39) and maximum expiratory pressure PEmax (p=0,98) did not show any difference. Also, no significant difference was observed concerning physical fitness, presenting p=0,08 for the sitting and getting up test on the chair in 30 ; p=0,54 for the extension and flexing of the elbow test in 30 ; p=0,38 for the walking test 6 ; p=0,38 for the parking gear test 2 , p=0,08 for the sitting and reaching test; p=0,42 for the scratching the back test; p=0,49 for the getting up and walking test; and p=0,62 for the global rate of activity limitation. There was moderate positive correlation between 6MWT and 2MST, r=0,54 (p=0,01) and negative moderate correlation between 6MWT and TUG, r=-0,61 (p=0,000) and between 2MST and TUG, r=-0,60 (p=0,000). Conclusion: The presence of EDS in the hypertension people studied, showed a bad quality of sleep, however this sleepiness did not influence the strength of the respiratory muscles. The physical fitness came out diminished in all hypertension people, regardless of the presence or non presence of sleep disturbance; and there is a close relationship between cardiovascular resistance and physical mobility, since when there is less cardiovascular resistance, there is precarious physical mobility and vice-versa
Resumo:
Background: Obesity impairment to the pulmonary function related to the magnitude of adiposity and is associated with excessive daytime sleepiness (EDS) and snoring, among others symptoms of respiratory disorders related to sleep. It is possible that obese individuals with excessive daytime sleepiness may make changes in lung function on spirometry monitored during the day as a consequence of fragmented sleep or episodes of nocturnal hypoventilation that cause respiratory and changes that can persist throughout the day. The combination of these findings alone sleepiness observed by subjective scales with pulmonary function in obese patients is unknown. Objective: To assess the influence of EDS and snoring on pulmonary function in morbidly obese and distinguish between different anthropometric markers, the snoring and sleepiness which the best predictors of spirometric function and respiratory muscle strength and endurance of these patients. Methods: We evaluated 40 morbidly obese markers on the anthropometric, spirometric respiratory variables, maximal inspiratory and expiratory pressures (MIP and MEP) and maximal voluntary ventilation (MVV) and the measured excessive daytime sleepiness (the Epworth sleepiness scale) and snoring (snoring scale of Stanford). The data were treated when the differences between the groups of obese patients with and without sleepiness, whereas the anthropometric variables, respiratory and snoring. Pearson's correlation was performed, and multiple regression analysis assessed the predictors of pulmonary function. For this we used the software SPSS 15.0 for windows and p <0.05. Results: 39 obese patients were included (28 women), age 36.92+11.97y, body mass index (BMI) 49.3+5.1kg/m², waist-hip ratio (WHR) 0.96+0.07 and neck circumference (NC) 44.1+4.2 cm. Spirometric values and respiratory pressures were up 80% of predicted values, except for endurance (MVV <80%). Obese with EDS have lower tidal volume. Positive correlation was observed between BMI and EDS, EDS and NC and between snoring and BMI, and negative correlation between EDS and tidal volume (TV), and between snoring and snoring FVC and FEV1. In linear regression the best predictor of pulmonary function was snoring, followed by NC. NC has more obese with higher strength (MEP, p = 0.031) and endurance (MVV p = 0.018) respiratory muscle. Conclusion: Obese with EDS tend to have lower TV. In addition, snoring and NC can better predict pulmonary function in obese when compared with other anthropometric markers or EDS. Obese patients with higher NC tend to have greater capacity for overall strength of respiratory muscles, but may have low muscle endurance
Resumo:
Background: The myotonic dystrophy (MD) is a multisystem neuromuscular disease that can affect the respiratory muscles and heart function, and cause impairment in quality of life. Objectives: Investigate the changes in respiratory muscle strength, health-related quality of life (HRQoL) and autonomic modulation heart rate (HR) in patients with MD. Methods: Twenty-three patients performed assessment of pulmonary function, sniff nasal inspiratory pressure (SNIP), the maximal inspiratory (MIP) and expiratory (MEP) pressure, and of HRQoL (SF-36 questionnaire). Of these patients, 17 underwent assessment of heart rate variability (HRV) at rest, in the supine and seated positions. Results: The values of respiratory muscle strength were 64, 70 and 80% of predicted for MEP, MIP, and SNIP, respectively. Significant differences were found in the SF-36 domains of physical functioning (58.7 ± 31,4 vs. 84.5 ± 23, p<0.01) and physical problems (43.4 ± 35.2 vs. 81.2 ± 34, p<0.001) when patients were compared with the reference values. Single linear regression analysis demonstrated that MIP explains 29% of the variance in physical functioning, 18% of physical problems and 20% of vitality. The HRV showed that from supine position to seated, HF decreased (0.43 x 0.30), and LF (0.57 x 0.70) and the LF/HF ratio (1.28 x 2.22) increased (p< 0.05). Compared to healthy persons, LF was lower in both male patients (2.68 x 2.99) and women (2.31 x 2.79) (p< 0.05). LF / HF ratio and LF were higher in men (5.52 x 1.5 and 0.8 x 0.6, p <0.05) and AF in women (0.43 x 0.21) (p< 0.05). There was positive correlation between the time of diagnosis and LF / HF ratio (r = 0.7, p <0.01). Conclusions: The expiratory muscle strength was reduced. The HRQoL was more impaired on the physical aspects and partly influenced by changes in inspiratory muscle strength. The HRV showed that may be sympathetic dysfunction in autonomic modulation of HR, although with normal adjustment of autonomic modulation during the change of posture. The parasympathetic modulation is higher in female patients and sympathetic tends to increase in patients with longer diagnosis
Resumo:
The strength of respiratory muscle are frequently assessed by maximal inspiratory and expiratory pressure, however, the maneuvers to assess PImax and PEmax are difficult for many patients. The sniff nasal inspiratory pressure (SNIP) is a simple and noninvasive technique use to assess inspiratory muscles strength. Reference values have been previous established for SNIP in adults but no previous studies have provided reference values for SNIP in adult Brazilian population. The main objective of this study were propose reference values of SNIP for Brazilian population through establishment of relationship between anthropometric measurements, physical activity profile and SNIP and at the same time compare the values obtained with reference values previously published. We studied 117 subjects (59 male and 58 female) distributed in different age grouped 20-80 years old. The results showed on significant positive relationship between SNIP and height and negative correlation with age (p<0.05). In the multiple linear regression analysis only age continued to have an independent predictive role for the two dependent variables that correlated with SNIP. The values of SNIP found in Brazilian population were higher when compared with predict values of previous studies. The results of this study provide reference equations of SNIP for health Brazilian population from 20 to 80 years old
Resumo:
The clinical importance of evaluating the respiratory muscles with a variety of tests has been proposed by several studies, once that the combination of several tests would allow a better diagnosis and therefore, a better clinical follow of disorders of the respiratory muscles. This study aimed to evaluate the feasibility of adapting a national electronic manovacuometer to measure the nasal inspiratory pressure (study 1) and analyze the level of load intensity of maximum voluntary ventilation, as well as the variables that may influence this maneuver in healthy subjects (study 2). We studied 20 healthy subjects by a random evaluation of two measures of SNIP in different equipments: a national and an imported. In study 2 it was analyzed the intensity of the load of MVV test, change in pressure developed during the maneuver, the possible differences between genders, and the correlations between the flow developed in the test and the result of MVV. In study 1 it was found the average for both measures of nasal inspiratory pressures: 125 ± 42.4 cmH2O for the imported equipment and 131.7 ± 28.7 cmH2O for the national one. Pearson analysis showed a significant correlation between the average, with a coefficient r = 0.63. The average values showed no significant differences evaluated by paired t test (p> 0.05). In the Bland-Altman analysis it was found a BIAS = 7 cmH2O, SD 32.9 and a confidence interval of - 57.5 cmH2O up to 71.5 cmH2O. In the second study it was found significant differences between the genders in the air volume moved, being higher in males 150.9 ± 13.1 l / min vs 118.5 ± 15.7 L / min for (p = 0.0002, 95% CI 44.85 to 20:05). Regarding the inspiratory and expiratory loading, they were significantly higher in men than in women, peak inspiratory pressure (34.7 ± 5.3 cmH2O vs 19.5 ± 4.2 cmH2O, 95% CI - 18.0 to -12.3, p <0.0001), peak expiratory (33.8 vs. 23.1 ± 5.9 cmH2O ± 5.4 cmH2O, 95% CI -17.1 to - 4.6, p <0.0001), and the delta pressure (59.7 ± 10 cmH2O vs 36.8 ± 8.3 cmH2O, 95% CI 14.5 to 31.2, p <0.0002). The Pearson correlation showed that the flow generated by the maneuver is strongly correlated with the delta-expiratory pressure / inspiratory (r2= 0.83,R = 0.91, 95%IC 0.72 a 0.97 e p< 0.0001).Through these results we suggest that the national electronic manovacuometer is feasible and safe to perform the sniff test in healthy subjects. For the MVV, there are differences between the genders in the intensity of pressure developed during the maneuver. We found a load intensity considered low during the MVV, and found a strong correlation between the flow generated in the test and the delta pressure expiratory / inspiratory
Resumo:
I ntroduction: The assessment of respiratory muscle strength is important in the diagnosis and monitoring of the respiratory muscles weakness of respiratory and neuromuscular diseases. However, there are still no studies that provide predictive equations and reference values for maximal respiratory pressures for children in our population. Aim: The purpose of this study was to propose predictive equations for maximal respiratory pressures in healthy school children. Method: This is an observational cross-sectional study. 144 healthy children were assessed. They were students from public and private schools in the city of Natal /RN (63 boys and 81 girls), subdivided in age groups of 7-8 and 9-11 years. The students presented the BMI, for age and sex, between 5 and 85 percentile. Maximal respiratory pressures were measured with the digital manometer MVD300 (Globalmed ®). The maximal inspiratory pressure (MIP) and maximal expiratory pressures (MEP) were measured from residual volume and total lung capacity, respectively. The data were analyzed using the SPSS Statistics 15.0 software (Statistical Package for Social Science) by assigning the significance level of 5%. Descriptive analysis was expressed as mean and standard deviation. T'Student test was used for unpaired comparison of averages of the variables. The comparison of measurements obtained with the predicted values in previous studies was performed using the paired t'Student test. The Pearson correlation test was used to verify the correlation of MRP's with the independent variables (age, sex, weight and height). For the equations analysis the stepwise linear regression was used. Results: By analyzing the data, we observed that in the age range studied MIP was significantly higher in boys. The MEP did not differ between boys and girls aged 7 to 8 years, the reverse occurred in the age between 9 and 11 years. The boys had a significant increase in respiratory muscle strength with advancing age. Regardless sex and age, MEP was always higher than the MIP. The reference values found in this study are similar to a sample of Spanish and Canadian children. The two models proposed in previous studies with children from other countries were not able to consistently predict the values observed in this studied population. The variables sex, age and weight correlated with MIP, whereas the MEP was also correlated with height. However, in the regression models proposed in this study, only gender and age were kept exerting influence on the variability of maximal inspiratory and expiratory pressures. Conclusion: This study provides reference values, lower limits of normality and proposes two models that allow predicting, through the independent variables, sex and age, the value of maximal static respiratory pressures in healthy children aged between 7 and 11 years old
Resumo:
Introduction: The reference values and prediction equations for maximal respiratory pressures (MRP) differ significantly between the available studies. This large discrepancy can be attributed to the different methodologies proposed. Although the importance of MRP is widely recognized, there are no Brazilian studies that provide predictive equations and reference values for PRM adolescents. Objectives: The purpose of this study was to provide normal values and propose predictive equations for maximal static respiratory pressures of Brazilian adolescents. Methods: An observational cross-sectional study, which evaluated 182 adolescents of both sexes aged between 12 and 18 years, enrolled in schools of the state and private in the city of Natal / RN. The selection of schools and participants of the study was randomly through a lottery system. The spirometric evaluation was performed through the digital spirometer One Flow FVC prior to the assessment of respiratory muscle strength. The MICs were measured with MVD digital manometer 300. Statistical analysis was performed using the SPSS 17.0 software STATISTICS, assigning the significance level of 5%. The normality of data distribution was verified using the Kolmogorov-Smirnov (KS). The descriptive analysis was expressed as mean and standard deviation. We used one-way ANOVA test to verify the difference of the averages of MRPs between age and gender and comparing the averages of MRPs between levels of physical activity. The test t'Student unpaired compared the averages of MRPs being ages and sexes. The comparison of mean values obtained in this study PRM with the values predicted using the equations mentioned above was relizada by testing paired t'Student. To verify the correlation between the PRM and the independent variables (age, weight, height) was used Pearson correlation test. Levene's test evaluated the homogeneity of variance. To obtain predictive equations analysis was used stepwise multiple linear regression. Results: There was no significant difference in mean age between the PRM. The male adolescents, regardless of age, showed superiority in MRP values when compared to the opposite sex. Weight, height and sex correlated with the PRM. Regression analysis suggested in this study, pointed out that the weight and sex had an influence in MIP and MEP only in relation to sex influenced. The mean for each PRM adolescents classified as very active were superior to those observed in adolescents classified as irregularly active. Conclusion: This study provides reference values and two models of predictive equations for maximal inspiratory and expiratory pressures, and to establish the lower limits of normality that will serve as an indispensable condition for careful evaluation of respiratory muscle strength in Brazilian adolescents
Resumo:
Introduction: The leukemias are the most common malignancy in children and adolescents. With the improvement in outcomes, there is a need to consider the morbidity to generate the protocols used in children under treatment. Aim: To evaluate pulmonary function in children with acute leukemia. Method: This study is an observational cross sectional. We evaluated 34 children distributed in groups A and B. Group A comprised 17 children with acute leukemia in the maintenance phase of chemotherapy treatment and group B with 17 healthy students from the public in the city of Natal / RN, matched for gender, age and height. The thoracic mobility was evaluated by thoracic expansion in the axillary and xiphoid levels. Spirometry was measured using a spirometer Microloop Viasys ® following the rules of the ATS and ERS. Maximal respiratory pressures were measured with digital manometer MVD300 (Globalmed ®). The maximal inspiratory pressure (MIP) and maximal expiratory pressure (MEP) were measured from residual volume and total lung capacity, respectively. The data were analyzed using the SPSS 17.0 software assigning the significance level of 5%. Descriptive analysis was expressed as mean and standard deviation. T'student test was used to compare unpaired values found in group A with group B values, as well as with the reference values used. To compare the respiratory coefficients in the axillary level with the xiphoid in each group, we used paired testing t student. Results: Group A was significantly decreased thoracic mobility and MIP compared to group B, and MIP compared to baseline. There was no significant difference between spirometric data from both groups and the values of group A with the reference values Mallozi (1995). There was no significant difference between the MIP and MEP values and lower limits of reference proposed by Borja (2011). Conclusion: Children with acute leukemia, myeloid or lymphoid, during maintenance phase of chemotherapy treatment have reduced thoracic mobility and MIP. However, to date, completion of clinical treatment, the spirometric variables and the strength of the expiratory muscles appear to remain preserved in children between five and ten years
Resumo:
The reduction of physiological capacity present in the process of aging causes a marked decline in lung function. The exercise does promote several positive changes in the physical health of people and protect the cardiorespiratory function. The aim of this study was to investigate the effects of a program of Pilates exercices on the strengh and electrical activity of respiratory muscles of elderly. This is a randomized, controlled clinical trial, evaluating 33 elderly aged 65 and 80 (70.88 ± 4.32), healthy, sedentary, without cognitive impairment and able the practice physical activity. The sample was divided into two groups, one experimental group with 16 elderly women who did Pilates exercises and a control group (17) that was not submitted to the exercises, but received educational booklets on aging and health care. The elderly were evaluated initially and after a period of three months, taking into account the Maximal Inspiratory Pressure (MIP) and Maximal Expiratory Pressure (MEP), obtained by Manovacuometry and intensity of EMG activity was measured using the values of Root Mean Square (RMS) for the diaphragm and rectus abdominis muscles, during the course of diaphragmatic breathing and MIP maneuver. Data were analyzed using SPSS version 17.0. For all tests, we used a significance level or p value < 0.05 and confidence interval 95%. RMS in diaphragm and rectus abdominis muscles in both tests increased, but the data were significant for the rectus abdominis during diaphragmatic breathing (p = 0.03) and the diaphragm during the MIP maneuver (p = 0.01). There was no significant variation of the MIP and MEP. Pilates exercises were responsible for increasing the electrical activation of the diaphragm and rectus abdominis muscles in a group of healthy elderly, but had no influence on changes in strength of respiratory muscles
Resumo:
A obesidade é uma epidemia global em alarmante ascensão. Caracterizada pelo excesso de gordura corporal subcutânea, de caráter multifatorial, está relacionada ao surgimento de diversas co-morbidades, entre elas, várias alterações respiratórias, estas se tornam mais intensas quanto maior o grau de obesidade. Não há consenso na relação entre os marcadores de adiposidade geral ou específicos e suas repercussões sobre a função ventilatória, especialmente em relação à sobrecarga muscular respiratória. Objetivo: Analisar a relação entre marcadores antropométricos e variáveis espirométricas e de força muscular respiratória em indivíduos com obesidade mórbida. Métodos: Estudo transversal entre setembro de 2007 e outubro de 2012. Participaram da pesquisa 163 obesos mórbidos (37.1±9.8 anos e IMC=49.0±5.88 Kg/m2) sem alterações espirométricas. Foram observadas as associações entre Índice de Massa Corporal-IMC, adiposidade localizada (Circunferências de Pescoço-CP, Cintura-CC e Quadril-CQ), percentual de gordura corporal através do Índice de Adiposidade Corporal-IAC, volumes e capacidades pulmonares (CVF, VEF1 e VRE) e pressões respiratória estática (PIM e PEM) e dinâmica (VVM). Resultados: O VRE foi o volume mais afetado pela obesidade (apenas 41%predito) e mostrou associação negativa nas relações com todos os marcadores de adiposidade (IMC: r=-0.52; IAC: r=-0.21; CC: r=-0.44; CP: r=-0.25 e CQ: r=-0.28). Há relação inversa entre o percentual de gordura corporal (IAC) com a CVF (r=-0.59), o VEF1(r=-0.56) e o VVM (r=-0.43). As pressões respiratórias são justificadas principalmente pela adiposidade ao redor do pescoço e o IAC. Nossos dados de força muscular respiratória foram melhores associados aos valores de referências sugeridos pelas equações de Harik-Klan et al (1998) para PIM (R²=0.72) e com a equação proposta por Neder et al (1999) para PEM (R²=0.52). Em um modelo de regressão linear, as variáveis de adiposidade não justificam a VVM, já o VEF1 explica 62% da variância da VVM em obesos mórbidos. Conclusão: O percentual da adiposidade corporal e a circunferência do pescoço estão associados com a força muscular e capacidade de gerar fluxo respiratório de obesos mórbidos. Sugerimos a equação elaborada por Harik-Klan et al (1998) para obtenção de valores preditos de PIM e a equação proposta por Neder et al (1999) para valores de normalidade da PEM em sujeitos com obesidade mórbida. Foi possível fornecer uma equação de referência específica para VVM em obesos mórbidos
Resumo:
Asthma treatment aims to achieve and maintain the control of the disease for prolonged periods. Inspiratory muscle training (IMT) may be an alternative in the care of patients with asthma, and it is used as a complementary therapy to the pharmacological treatment. Thus, the aim of this study was to investigate the effects of a domiciliary program of IMT on the electromyographic activity of the respiratory muscles in adults with asthma. This is a clinical trial in which ten adults with asthma and ten healthy adults were randomized into two groups (control and training). The electrical activity of inspiratory muscles (sternocleidomastoid (ECM) and diaphragm) was obtained by a surface electromyography. Furthermore, we assessed lung function (spirometry), maximal inspiratory pressure - MIP - (manometer). The functional capacity was evaluated by six minute walk test. Participants were assessed before and after the IMT protocol of 6 weeks with POWERbreathe® device. The training and the control groups underwent IMT with 50% and 15 % of MIP, respectively. The sample data were analyzed using SPSS 20.0, attributing significance of 5 %. Were used t test, ANOVA one way and Pearson correlation. It was observed an increase in MIP, after IMT, in both training groups and in healthy sham group (P < 0.05), which was accompanied by a significant increase in ECM activity during MIP in healthy training group (1488 %) and in asthma training group (ATG) (1186.4%). The ATG also showed a significant increase in diaphragm activity in basal respiration (48.5%). Functional capacity increased significantly in the asthma sham group (26.5 m) and in the asthma training group (45.2 m). These findings suggest that IMT promoted clinical improvements in all groups, especially the ATG, which makes it an important complementary treatment for patients with asthma
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Immunohistochemical screening for monoclonal antibodies prepared by immunization of mice with a rat osteoblastic cell population led to identification of one antibody that reacted against a small population of cells present in the soft connective tissue compartment of 21 days fetal rat calvaria. The morphology of the cells and the immunohistochemical staining characteristics (a distinct intracellular granular pattern) suggested that the antibody might be reacting specifically against mast cells. We used combined histochemistry and immunohistochemistry to further characterize this antibody, designated RCJ102. Cryosections containing calvaria bone, soft connective tissues and skin were prepared from the top of the head of 21 days fetal rats, and from adult rats cryosections of lung, muscle, adipose tissue and small intestine were prepared. Some sections were labelled by indirect immunofluorescence with RCJ102; corresponding sections were labelled histochemically with toluidine blue. There was a direct correspondence between mast cells identified histochemically and cells labelling with RCJ102 in all tissues except intestine, in which the mast cell detectable by histochemistry were not labelled by RCJ102. These results suggest that the RCJ102 antibody will be a valuable new reagent for further elucidation of the heterogeneity described between connective tissue and intestinal mucosal mast cells.