991 resultados para Non- Commutative Ring
Resumo:
We define a category of quasi-coherent sheaves of topological spaces on projective toric varieties and prove a splitting result for its algebraic K-theory, generalising earlier results for projective spaces. The splitting is expressed in terms of the number of interior lattice points of dilations of a polytope associated to the variety. The proof uses combinatorial and geometrical results on polytopal complexes. The same methods also give an elementary explicit calculation of the cohomology groups of a projective toric variety over any commutative ring.
Resumo:
We present a construction of constant weight codes based on the prime ideals of a Noetherian commutative ring. The coding scheme is based on the uniqueness of the primary decomposition of ideals in Noetherian rings. The source alphabet consists of a set of radical ideals constructed from a chosen subset of the prime spectrum of the ring. The distance function between two radical ideals is taken to be the Hamming metric based on the symmetric distance between sets. As an application we construct codes for random networks employing SAF routing.
Resumo:
This thesis examines several examples of systems in which non-Abelian magnetic flux and non-Abelian forms of the Aharonov-Bohm effect play a role. We consider the dynamical consequences in these systems of some of the exotic phenomena associated with non-Abelian flux, such as Cheshire charge holonomy interactions and non-Abelian braid statistics. First, we use a mean-field approximation to study a model of U(2) non-Abelian anyons near its free-fermion limit. Some self-consistent states are constructed which show a small SU(2)-breaking charge density that vanishes in the fermionic limit. This is contrasted with the bosonic limit where the SU(2) asymmetry of the ground state can be maximal. Second, a global analogue of Chesire charge is described, raising the possibility of observing Cheshire charge in condensedmatter systems. A potential realization in superfluid He-3 is discussed. Finally, we describe in some detail a method for numerically simulating the evolution of a network of non-Abelian (S3) cosmic strings, keeping careful track of all magnetic fluxes and taking full account of their non-commutative nature. I present some preliminary results from this simulation, which is still in progress. The early results are suggestive of a qualitatively new, non-scaling behavior.
Resumo:
We associate some graphs to a ring R and we investigate the interplay between the ring-theoretic properties of R and the graph-theoretic properties of the graphs associated to R. Let Z(R) be the set of zero-divisors of R. We define an undirected graph ᴦ(R) with nonzero zero-divisors as vertices and distinct vertices x and y are adjacent if xy=0 or yx=0. We investigate the Isomorphism Problem for zero-divisor graphs of group rings RG. Let Sk denote the sphere with k handles, where k is a non-negative integer, that is, Sk is an oriented surface of genus k. The genus of a graph is the minimal integer n such that the graph can be embedded in Sn. The annihilating-ideal graph of R is defined as the graph AG(R) with the set of ideals with nonzero annihilators as vertex such that two distinct vertices I and J are adjacent if IJ=(0). We characterize Artinian rings whose annihilating-ideal graphs have finite genus. Finally, we extend the definition of the annihilating-ideal graph to non-commutative rings.
Resumo:
For any finite commutative ring B with an identity there is a strict inclusion B[X; Z(0)] subset of B[X; Z(0)] subset of B[X; 1/2(2)Z(0)] of commutative semigroup rings. This work is a continuation of Shah et al. (2011) [8], in which we extend the study of Andrade and Palazzo (2005) [7] for cyclic codes through the semigroup ring B[X; 1/2; Z(0)] In this study we developed a construction technique of cyclic codes through a semigroup ring B[X; 1/2(2)Z(0)] instead of a polynomial ring. However in the second phase we independently considered BCH, alternant, Goppa, Srivastava codes through a semigroup ring B[X; 1/2(2)Z(0)]. Hence we improved several results of Shah et al. (2011) [8] and Andrade and Palazzo (2005) [7] in a broader sense. Published by Elsevier Ltd
Resumo:
Let epsilon be a commutative ring with identity and P is an element of epsilon[x] be a polynomial. In the present paper we consider digit representations in the residue class ring epsilon[x]/(P). In particular, we are interested in the question whether each A is an element of epsilon[x]/(P) can be represented modulo P in the form e(0)+ e(1)x + ... + e(h)x(h), where the e(i) is an element of epsilon[x]/(P) are taken from a fixed finite set of digits. This general concept generalizes both canonical number systems and digit systems over finite fields. Due to the fact that we do not assume that 0 is an element of the digit set and that P need not be monic, several new phenomena occur in this context.
Resumo:
Let a commutative ring R be a direct product of indecomposable rings with identity and let G be a finite abelian p-group. In the present paper we give a complete system of invariants of the group algebra RG of G over R when p is an invertible element in R. These investigations extend some classical results of Berman (1953 and 1958), Sehgal (1970) and Karpilovsky (1984) as well as a result of Mollov (1986).
Resumo:
BACKGROUND: ALK rearrangement is particularly observed in signet-ring sub-type adenocarcinoma. Since fluorescence in situ hybridization (FISH) is not suitable for mass screening, we aimed to characterize the predictive utility of tumour morphology and ALK immunoreactivity to identify ALK rearrangement, in a primary lung adenocarcinoma dataset enriched for signet-ring morphology, compared with that of other morphology. METHODS: 7 adenocarcinomas from diagnostic archives reported with signet-ring morphology were assessed and compared with 11 adenocarcinomas without signet-ring features over the same time period. Growth patterns were reviewed, ALK expression was assessed by standard immunohistochemistry using ALK1 clone and Envision detection (Dako), and ALK rearrangement was assessed by FISH (Abbott Molecular). Associations between groups and predictive utility of tumour morphology and ALK expression using FISH as gold standard were calculated. RESULTS: 2 excision lung biopsy cases with pure (100%) signet-ring morphology and solid patterns demonstrated diffuse moderate cytoplasmic ALK immunoreactivity (2+) and harboured ALK rearrangements (p=0.007), unlike 5 mixed-signet-ring and 11 non-signet-ring adenocarcinomas, which showed negative or 1+ immunoreactivity; and did not harbour ALK rearrangements (p>0.1). ALK expression was not associated with ALK copy number. 6 of 7 cases with signet ring morphology stained for TTF-1. Pure signet-ring morphology and moderate ALK expression were both associated with ALK rearranged tumours. CONCLUSION: ALK rearrangement is strongly associated with ALK immunoreactivity, and was seen only in tumours with pure signet-ring morphology and solid growth pattern. Tumour morphology, growth pattern and ALK immunoreactivity appear to be good indicators of ALK rearrangement, with TTF-1 positivity aiding in proving primary pulmonary origin.
Resumo:
We study the relations of shift equivalence and strong shift equivalence for matrices over a ring $\mathcal{R}$, and establish a connection between these relations and algebraic K-theory. We utilize this connection to obtain results in two areas where the shift and strong shift equivalence relations play an important role: the study of finite group extensions of shifts of finite type, and the Generalized Spectral Conjectures of Boyle and Handelman for nonnegative matrices over subrings of the real numbers. We show the refinement of the shift equivalence class of a matrix $A$ over a ring $\mathcal{R}$ by strong shift equivalence classes over the ring is classified by a quotient $NK_{1}(\mathcal{R}) / E(A,\mathcal{R})$ of the algebraic K-group $NK_{1}(\calR)$. We use the K-theory of non-commutative localizations to show that in certain cases the subgroup $E(A,\mathcal{R})$ must vanish, including the case $A$ is invertible over $\mathcal{R}$. We use the K-theory connection to clarify the structure of algebraic invariants for finite group extensions of shifts of finite type. In particular, we give a strong negative answer to a question of Parry, who asked whether the dynamical zeta function determines up to finitely many topological conjugacy classes the extensions by $G$ of a fixed mixing shift of finite type. We apply the K-theory connection to prove the equivalence of a strong and weak form of the Generalized Spectral Conjecture of Boyle and Handelman for primitive matrices over subrings of $\mathbb{R}$. We construct explicit matrices whose class in the algebraic K-group $NK_{1}(\mathcal{R})$ is non-zero for certain rings $\mathcal{R}$ motivated by applications. We study the possible dynamics of the restriction of a homeomorphism of a compact manifold to an isolated zero-dimensional set. We prove that for $n \ge 3$ every compact zero-dimensional system can arise as an isolated invariant set for a homeomorphism of a compact $n$-manifold. In dimension two, we provide obstructions and examples.
Three primary school students’ cognition about 3D rotation in a virtual reality learning environment
Resumo:
This paper reports on three primary school students’ explorations of 3D rotation in a virtual reality learning environment (VRLE) named VRMath. When asked to investigate if you would face the same direction when you turn right 45 degrees first then roll up 45 degrees, or when you roll up 45 degrees first then turn right 45 degrees, the students found that the different order of the two turns ended up with different directions in the VRLE. This was contrary to the students’ prior predictions based on using pen, paper and body movements. The findings of this study showed the difficulty young children have in perceiving and understanding the non-commutative nature of 3D rotation and the power of the computational VRLE in giving students experiences that they rarely have in real life with 3D manipulations and 3D mental movements.
Resumo:
In order to simulate stiff biochemical reaction systems, an explicit exponential Euler scheme is derived for multidimensional, non-commutative stochastic differential equations with a semilinear drift term. The scheme is of strong order one half and A-stable in mean square. The combination with this and the projection method shows good performance in numerical experiments dealing with an alternative formulation of the chemical Langevin equation for a human ether a-go-go related gene ion channel mode
Resumo:
This masters thesis explores some of the most recent developments in noncommutative quantum field theory. This old theme, first suggested by Heisenberg in the late 1940s, has had a renaissance during the last decade due to the firmly held belief that space-time becomes noncommutative at small distances and also due to the discovery that string theory in a background field gives rise to noncommutative field theory as an effective low energy limit. This has led to interesting attempts to create a noncommutative standard model, a noncommutative minimal supersymmetric standard model, noncommutative gravity theories etc. This thesis reviews themes and problems like those of UV/IR mixing, charge quantization, how to deal with the non-commutative symmetries, how to solve the Seiberg-Witten map, its connection to fluid mechanics and the problem of constructing general coordinate transformations to obtain a theory of noncommutative gravity. An emphasis has been put on presenting both the group theoretical results and the string theoretical ones, so that a comparison of the two can be made.