Digit systems over commutative rings


Autoria(s): Scheicher, Klaus; Surer, Paul; Thuswaldner, Joerg M.; Van de Woestijne, Christiaan E.
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

18/03/2015

18/03/2015

01/09/2014

Resumo

Let epsilon be a commutative ring with identity and P is an element of epsilon[x] be a polynomial. In the present paper we consider digit representations in the residue class ring epsilon[x]/(P). In particular, we are interested in the question whether each A is an element of epsilon[x]/(P) can be represented modulo P in the form e(0)+ e(1)x + ... + e(h)x(h), where the e(i) is an element of epsilon[x]/(P) are taken from a fixed finite set of digits. This general concept generalizes both canonical number systems and digit systems over finite fields. Due to the fact that we do not assume that 0 is an element of the digit set and that P need not be monic, several new phenomena occur in this context.

Formato

1459-1483

Identificador

http://dx.doi.org/10.1142/S1793042114500389

International Journal Of Number Theory. Singapore: World Scientific Publ Co Pte Ltd, v. 10, n. 6, p. 1459-1483, 2014.

1793-0421

http://hdl.handle.net/11449/117220

10.1142/S1793042114500389

WOS:000341012700008

Idioma(s)

eng

Publicador

World Scientific Publ Co Pte Ltd

Relação

International Journal Of Number Theory

Direitos

closedAccess

Palavras-Chave #Canonical number systems #shift radix systems #digit systems
Tipo

info:eu-repo/semantics/article