962 resultados para Mean-Reverting Jump-Diffusion
Resumo:
Major research on equity index dynamics has investigated only US indices (usually the S&P 500) and has provided contradictory results. In this paper a clarification and extension of that previous research is given. We find that European equity indices have quite different dynamics from the S&P 500. Each of the European indices considered may be satisfactorily modelled using either an affine model with price and volatility jumps or a GARCH volatility process without jumps. The S&P 500 dynamics are much more difficult to capture in a jump-diffusion framework.
Resumo:
We develop an affine jump diffusion (AJD) model with the jump-risk premium being determined by both idiosyncratic and systematic sources of risk. While we maintain the classical affine setting of the model, we add a finite set of new state variables that affect the paths of the primitive, under both the actual and the risk-neutral measure, by being related to the primitive's jump process. Those new variables are assumed to be commom to all the primitives. We present simulations to ensure that the model generates the volatility smile and compute the "discounted conditional characteristic function'' transform that permits the pricing of a wide range of derivatives.
Resumo:
We consider the problems of computing the power and exponential moments EXs and EetX of square Gaussian random matrices X=A+BWC for positive integer s and real t, where W is a standard normal random vector and A, B, C are appropriately dimensioned constant matrices. We solve the problems by a matrix product scalarization technique and interpret the solutions in system-theoretic terms. The results of the paper are applicable to Bayesian prediction in multivariate autoregressive time series and mean-reverting diffusion processes.
Resumo:
This paper will show that short horizon stock returns for UK portfolios are more predictable than suggested by sample autocorrelation co-efficients. Four capitalisation based portfolios are constructed for the period 1976–1991. It is shown that the first order autocorrelation coefficient of monthly returns can explain no more than 10% of the variation in monthly portfolio returns. Monthly autocorrelation coefficients assume that each weekly return of the previous month contains the same amount of information. However, this will not be the case if short horizon returns contain predictable components which dissipate rapidly. In this case, the return of the most recent week would say a lot more about the future monthly portfolio return than other weeks. This suggests that when predicting future monthly portfolio returns more weight should be given to the most recent weeks of the previous month, because, the most recent weekly returns provide the most information about the subsequent months' performance. We construct a model which exploits the mean reverting characteristics of monthly portfolio returns. Using this model we forecast future monthly portfolio returns. When compared to forecasts that utilise the autocorrelation statistic the model which exploits the mean reverting characteristics of monthlyportfolio returns can forecast future returns better than the autocorrelation statistic, both in and out of sample.
Resumo:
This paper explores the real exchange rate behavior in Mexico from 1960 until 2005. Since the empirical analysis reveals that the real exchange rate is not mean reverting, we propose that economic fundamental variables affect its evolution in the long-run. Therefore, based on equilibrium exchange rate paradigms, we propose a simple model of real exchange rate determination which includes the relative labor productivity, the real interest rates and the net foreign assets over a long period of time. Our analysis also considers the dynamic adjustment in response to shocks through impulse response functions derived from the multivariate VAR model.
Resumo:
This paper discusses the role of deterministic components in the DGP and in the auxiliary regression model which underlies the implementation of the Fractional Dickey-Fuller (FDF) test for I(1) against I(d) processes with d ∈ [0, 1). This is an important test in many economic applications because I(d) processess with d & 1 are mean-reverting although, when 0.5 ≤ d & 1,, like I(1) processes, they are nonstationary. We show how simple is the implementation of the FDF in these situations, and argue that it has better properties than LM tests. A simple testing strategy entailing only asymptotically normally distributed tests is also proposed. Finally, an empirical application is provided where the FDF test allowing for deterministic components is used to test for long-memory in the per capita GDP of several OECD countries, an issue that has important consequences to discriminate between growth theories, and on which there is some controversy.
Resumo:
This paper discusses the role of deterministic components in the DGP and in the auxiliaryregression model which underlies the implementation of the Fractional Dickey-Fuller (FDF) test for I(1) against I(d) processes with d [0, 1). This is an important test in many economic applications because I(d) processess with d < 1 are mean-reverting although, when 0.5 = d < 1, like I(1) processes, they are nonstationary. We show how simple is the implementation of the FDF in these situations, and argue that it has better properties than LM tests. A simple testing strategy entailing only asymptotically normally distributedtests is also proposed. Finally, an empirical application is provided where the FDF test allowing for deterministic components is used to test for long-memory in the per capita GDP of several OECD countries, an issue that has important consequences to discriminate between growth theories, and on which there is some controversy.
Resumo:
The well-known lack of power of unit root tests has often been attributed to the shortlength of macroeconomic variables and also to DGP s that depart from the I(1)-I(0)alternatives. This paper shows that by using long spans of annual real GNP and GNPper capita (133 years) high power can be achieved, leading to the rejection of both theunit root and the trend-stationary hypothesis. This suggests that possibly neither modelprovides a good characterization of these data. Next, more flexible representations areconsidered, namely, processes containing structural breaks (SB) and fractional ordersof integration (FI). Economic justification for the presence of these features in GNP isprovided. It is shown that the latter models (FI and SB) are in general preferred to theARIMA (I(1) or I(0)) ones. As a novelty in this literature, new techniques are appliedto discriminate between FI and SB models. It turns out that the FI specification ispreferred, implying that GNP and GNP per capita are non-stationary, highly persistentbut mean-reverting series. Finally, it is shown that the results are robust when breaksin the deterministic component are allowed for in the FI model. Some macroeconomicimplications of these findings are also discussed.
Resumo:
In this thesis, I develop analytical models to price the value of supply chain investments under demand uncer¬tainty. This thesis includes three self-contained papers. In the first paper, we investigate the value of lead-time reduction under the risk of sudden and abnormal changes in demand forecasts. We first consider the risk of a complete and permanent loss of demand. We then provide a more general jump-diffusion model, where we add a compound Poisson process to a constant-volatility demand process to explore the impact of sudden changes in demand forecasts on the value of lead-time reduction. We use an Edgeworth series expansion to divide the lead-time cost into that arising from constant instantaneous volatility, and that arising from the risk of jumps. We show that the value of lead-time reduction increases substantially in the intensity and/or the magnitude of jumps. In the second paper, we analyze the value of quantity flexibility in the presence of supply-chain dis- intermediation problems. We use the multiplicative martingale model and the "contracts as reference points" theory to capture both positive and negative effects of quantity flexibility for the downstream level in a supply chain. We show that lead-time reduction reduces both supply-chain disintermediation problems and supply- demand mismatches. We furthermore analyze the impact of the supplier's cost structure on the profitability of quantity-flexibility contracts. When the supplier's initial investment cost is relatively low, supply-chain disin¬termediation risk becomes less important, and hence the contract becomes more profitable for the retailer. We also find that the supply-chain efficiency increases substantially with the supplier's ability to disintermediate the chain when the initial investment cost is relatively high. In the third paper, we investigate the value of dual sourcing for the products with heavy-tailed demand distributions. We apply extreme-value theory and analyze the effects of tail heaviness of demand distribution on the optimal dual-sourcing strategy. We find that the effects of tail heaviness depend on the characteristics of demand and profit parameters. When both the profit margin of the product and the cost differential between the suppliers are relatively high, it is optimal to buffer the mismatch risk by increasing both the inventory level and the responsive capacity as demand uncertainty increases. In that case, however, both the optimal inventory level and the optimal responsive capacity decrease as the tail of demand becomes heavier. When the profit margin of the product is relatively high, and the cost differential between the suppliers is relatively low, it is optimal to buffer the mismatch risk by increasing the responsive capacity and reducing the inventory level as the demand uncertainty increases. In that case, how¬ever, it is optimal to buffer with more inventory and less capacity as the tail of demand becomes heavier. We also show that the optimal responsive capacity is higher for the products with heavier tails when the fill rate is extremely high.
Resumo:
The main objective of this master’s thesis was to quantitatively study the reliability of market and sales forecasts of a certain company by measuring bias, precision and accuracy of these forecasts by comparing forecasts against actual values. Secondly, the differences of bias, precision and accuracy between markets were explained by various macroeconomic variables and market characteristics. Accuracy and precision of the forecasts seems to vary significantly depending on the market that is being forecasted, the variable that is being forecasted, the estimation period, the length of the estimated period, the forecast horizon and the granularity of the data. High inflation, low income level and high year-on-year market volatility seems to be related with higher annual market forecast uncertainty and high year-on-year sales volatility with higher sales forecast uncertainty. When quarterly market size is forecasted, correlation between macroeconomic variables and forecast errors reduces. Uncertainty of the sales forecasts cannot be explained with macroeconomic variables. Longer forecasts are more uncertain, shorter estimated period leads to higher uncertainty, and usually more recent market forecasts are less uncertain. Sales forecasts seem to be more uncertain than market forecasts, because they incorporate both market size and market share risks. When lead time is more than one year, forecast risk seems to grow as a function of root forecast horizon. When lead time is less than year, sequential error terms are typically correlated, and therefore forecast errors are trending or mean-reverting. The bias of forecasts seems to change in cycles, and therefore the future forecasts cannot be systematically adjusted with it. The MASE cannot be used to measure whether the forecast can anticipate year-on-year volatility. Instead, we constructed a new relative accuracy measure to cope with this particular situation.
Resumo:
Dans cette thèse, nous étudions quelques problèmes fondamentaux en mathématiques financières et actuarielles, ainsi que leurs applications. Cette thèse est constituée de trois contributions portant principalement sur la théorie de la mesure de risques, le problème de l’allocation du capital et la théorie des fluctuations. Dans le chapitre 2, nous construisons de nouvelles mesures de risque cohérentes et étudions l’allocation de capital dans le cadre de la théorie des risques collectifs. Pour ce faire, nous introduisons la famille des "mesures de risque entropique cumulatifs" (Cumulative Entropic Risk Measures). Le chapitre 3 étudie le problème du portefeuille optimal pour le Entropic Value at Risk dans le cas où les rendements sont modélisés par un processus de diffusion à sauts (Jump-Diffusion). Dans le chapitre 4, nous généralisons la notion de "statistiques naturelles de risque" (natural risk statistics) au cadre multivarié. Cette extension non-triviale produit des mesures de risque multivariées construites à partir des données financiéres et de données d’assurance. Le chapitre 5 introduit les concepts de "drawdown" et de la "vitesse d’épuisement" (speed of depletion) dans la théorie de la ruine. Nous étudions ces concepts pour des modeles de risque décrits par une famille de processus de Lévy spectrallement négatifs.
Resumo:
En este trabajo construimos un modelo de mercado financiero basado en un proceso telegráfico más un proceso de saltos para la valoración de opciones Europeas. Vamos a asumir que el tamaño de los saltos es constante y después que es aleatorio, en ambos casos estos saltos ocurren cuando la tendencia del mercado cambia. Estos modelos capturan la dinámica del mercado en periodos con presencia de ciclos financieros. Mostraremos la estructura del conjunto de medidas neutrales al riesgo, además, de fórmulas explícitas para los precios de las opciones Europeas de venta y compra.
Resumo:
En esta Tesis se presenta el modelo de Kou, Difusión con saltos doble exponenciales, para la valoración de opciones Call de tipo europeo sobre los precios del petróleo como activo subyacente. Se mostrarán los cálculos numéricos para la formulación de expresiones analíticas que se resolverán mediante la implementación de algoritmos numéricos eficientes que conllevaran a los precios teóricos de las opciones evaluadas. Posteriormente se discutirán las ventajas de usar métodos como la transformada de Fourier por la sencillez relativa de su programación frente a los desarrollos de otras técnicas numéricas. Este método es usado en conjunto con el ejercicio de calibración no paramétrica de regularización, que mediante la minimización de los errores al cuadrado sujeto a una penalización fundamentada en el concepto de entropía relativa, resultaran en la obtención de precios para las opciones Call sobre el petróleo considerando una mejor capacidad del modelo de asignar precios justos frente a los transados en el mercado.
Resumo:
Las estrategias de inversión pairs trading se basan en desviaciones del precio entre pares de acciones correlacionadas y han sido ampliamente implementadas por fondos de inversión tomando posiciones largas y cortas en las acciones seleccionadas cuando surgen divergencias y obteniendo utilidad cerrando la posición al converger. Se describe un modelo de reversión a la media para analizar la dinámica que sigue el diferencial del precio entre acciones ordinarias y preferenciales de una misma empresa en el mismo mercado. La media de convergencia en el largo plazo es obtenida con un filtro de media móvil, posteriormente, los parámetros del modelo de reversión a la media se estiman mediante un filtro de Kalman bajo una formulación de estado espacio sobre las series históricas. Se realiza un backtesting a la estrategia de pairs trading algorítmico sobre el modelo propuesto indicando potenciales utilidades en mercados financieros que se observan por fuera del equilibrio. Aplicaciones de los resultados podrían mostrar oportunidades para mejorar el rendimiento de portafolios, corregir errores de valoración y sobrellevar mejor periodos de bajos retornos.
Resumo:
Mensalmente são publicados relatórios pelo Departamento de Agricultura dos Estados Unidos (USDA) onde são divulgados dados de condições das safras, oferta e demanda globais, nível dos estoques, que servem como referência para todos os participantes do mercado de commodities agrícolas. Esse mercado apresenta uma volatilidade acentuada no período de divulgação dos relatórios. Um modelo de volatilidade estocástica com saltos é utilizado para a dinâmica de preços de milho e de soja. Não existe um modelo ‘ideal’ para tal fim, cada um dos existentes têm suas vantagens e desvantagens. O modelo escolhido foi o de Oztukel e Wilmott (1998), que é um modelo de volatilidade estocástica empírica, incrementado com saltos determinísticos. Empiricamente foi demonstrado que um modelo de volatilidade estocástica pode ser bem ajustado ao mercado de commodities, e o processo de jump-diffusion pode representar bem os saltos que o mercado apresenta durante a divulgação dos relatórios. As opções de commodities agrícolas que são negociadas em bolsa são do tipo americanas, então alguns métodos disponíveis poderiam ser utilizados para precificar opções seguindo a dinâmica do modelo proposto. Dado que o modelo escolhido é um modelo multi-fatores, então o método apropriado para a precificação é o proposto por Longstaff e Schwartz (2001) chamado de Monte Carlo por mínimos quadrados (LSM). As opções precificadas pelo modelo são utilizadas em uma estratégia de hedge de uma posição física de milho e de soja, e a eficiência dessa estratégia é comparada com estratégias utilizando-se instrumentos disponíveis no mercado.