754 resultados para Mathematical problem solving
Resumo:
This article focuses on problem solving activities in a first grade classroom in a typical small community and school in Indiana. But, the teacher and the activities in this class were not at all typical of what goes on in most comparable classrooms; and, the issues that will be addressed are relevant and important for students from kindergarten through college. Can children really solve problems that involve concepts (or skills) that they have not yet been taught? Can children really create important mathematical concepts on their own – without a lot of guidance from teachers? What is the relationship between problem solving abilities and the mastery of skills that are widely regarded as being “prerequisites” to such tasks?Can primary school children (whose toolkits of skills are limited) engage productively in authentic simulations of “real life” problem solving situations? Can three-person teams of primary school children really work together collaboratively, and remain intensely engaged, on problem solving activities that require more than an hour to complete? Are the kinds of learning and problem solving experiences that are recommended (for example) in the USA’s Common Core State Curriculum Standards really representative of the kind that even young children encounter beyond school in the 21st century? … This article offers an existence proof showing why our answers to these questions are: Yes. Yes. Yes. Yes. Yes. Yes. And: No. … Even though the evidence we present is only intended to demonstrate what’s possible, not what’s likely to occur under any circumstances, there is no reason to expect that the things that our children accomplished could not be accomplished by average ability children in other schools and classrooms.
Resumo:
The purpose of the book is to use Delphi as a vehicle to introduce some fundamental algorithms and to illustrate several mathematical and problem-solving techniques. This book is therefore intended to be more of a reference for problem-solving, with the solution expressed in Delphi. It introduces a somewhat eclectic collection of material, much of which will not be found in a typical book on Pascal or Delphi. Many of the topics have been used by the author over a period of about ten years at Bond University, Australia in various subjects from 1993 to 2003. Much of the work was connected with a data structures subject (second programming course) conducted variously in MODULA-2, Oberon and Delphi, at Bond University, however there is considerable other, more recent material, e.g., a chapter on Sudoku.
Resumo:
This paper examines the application of the Reciprocal Teaching instructional approach to Mathematical word problems in the middle years. The Reciprocal Teaching process is extended from the four traditional strategies of predicting, clarifying, questioning and summarising, to include further cognitive reading comprehension strategies applied to the context of solving Mathematical word problems.
Resumo:
This article discusses the design of interactive online activities that introduce problem solving skills to first year law students. They are structured around the narrative framework of ‘Ruby’s Music Festival’ where a young business entrepreneur encounters various issues when organising a music festival and students use a generic problem solving method to provide legal solutions. These online activities offer students the opportunity to obtain early formative feedback on their legal problem solving abilities prior to undertaking a later summative assessment task. The design of the activities around the Ruby narrative framework and the benefits of providing students with early formative feedback will be discussed.
Resumo:
Math-Towers (www.math-towers.ca) is an online resource for students in grades 6 to 10 that supports collaborative problem-solving and investigations. This paper presents the philosophical position motivating the development of Math-Towers and describes how the site presents and motivates the mathematical challenges and supports participants' exploration and collaboration.
Resumo:
The purpose of this study is to determine if students solve math problems using addition, subtraction, multiplication, and division consistently and whether students transfer these skills to other mathematical situations and solutions. In this action research study, a classroom of 6th grade mathematics students was used to investigate how students solve word problems and how they determine which mathematical approach to use to solve a problem. It was discovered that many of the students read and re-read a question before they try to find an answer. Most students will check their answer to determine if it is correct and makes sense. Most students agree that mastering basic math facts is very important for problem solving and prefer mathematics that does not focus on problem solving. As a result of this research, it will be emphasized to the building principal and staff the need for a unified and focused curriculum with a scope and sequence for delivery that is consistently followed. The importance of managing basic math skills and making sure each student is challenged to be a mathematical thinker will be stressed.
Resumo:
This study examines how one secondary school teacher’s use of purposeful oral mathematics language impacted her students’ language use and overall communication in written solutions while working with word problems in a grade nine academic mathematics class. Mathematics is often described as a distinct language. As with all languages, students must develop a sense for oral language before developing social practices such as listening, respecting others ideas, and writing. Effective writing is often seen by students that have strong oral language skills. Classroom observations, teacher and student interviews, and collected student work served as evidence to demonstrate the nature of both the teacher’s and the students’ use of oral mathematical language in the classroom, as well as the effect the discourse and language use had on students’ individual written solutions while working on word problems. Inductive coding for themes revealed that the teacher’s purposeful use of oral mathematical language had a positive impact on students’ written solutions. The teacher’s development of a mathematical discourse community created a space for the students to explore mathematical language and concepts that facilitated a deeper level of conceptual understanding of the learned material. The teacher’s oral language appeared to transfer into students written work albeit not with the same complexity of use of the teacher’s oral expression of the mathematical register. Students that learn mathematical language and concepts better appear to have a growth mindset, feel they have ownership over their learning, use reorganizational strategies, and help develop a discourse community.
Resumo:
The goal of the study was to investigate differences in how two groups of students activated mathematical competencies in the mathematical kangaroo (MK). The two groups, group 1 and 2, were identified from a sample of 264 students (grade 7, age 13) through high achievement (top 20 %) in only one of the tests: the MK or a curriculum bounded test (CT). Analysis of mathematical competencies showed that the high achievers in the MK, activated the problem solving competency to a greater extent than the high achievers in the CT, when doing the MK. The results indicate the importance of using non-traditional tests in the assessment process of students to be able to find students that might possess good mathematical competencies although they do not show it on curriculum bounded tests.
Resumo:
Novice programmers have difficulty developing an algorithmic solution while simultaneously obeying the syntactic constraints of the target programming language. To see how students fare in algorithmic problem solving when not burdened by syntax, we conducted an experiment in which a large class of beginning programmers were required to write a solution to a computational problem in structured English, as if instructing a child, without reference to program code at all. The students produced an unexpectedly wide range of correct, and attempted, solutions, some of which had not occurred to their teachers. We also found that many common programming errors were evident in the natural language algorithms, including failure to ensure loop termination, hardwiring of solutions, failure to properly initialise the computation, and use of unnecessary temporary variables, suggesting that these mistakes are caused by inexperience at thinking algorithmically, rather than difficulties in expressing solutions as program code.
Resumo:
Little research has been conducted on how students work when they are required to plan, build and evaluate artefacts in technology rich learning environments such as those supported by tools including flow charts, Labview programming and Lego construction. In this study, activity theory was used as an analytic tool to examine the social construction of meaning. There was a focus on the effect of teachers’ goals and the rules they enacted upon student use of the flow chart planning tool, and the tools of the programming language Labview and Lego construction. It was found that the articulation of a teacher’s goals via rules and divisions of labour helped to form distinct communities of learning and influenced the development of different problem solving strategies. The use of the planning tool flow charting was associated with continuity of approach, integration of problem solutions including appreciation of the nexus between construction and programming, and greater educational transformation. Students who flow charted defined problems in a more holistic way and demonstrated more methodical, insightful and integrated approaches to their use of tools. The findings have implications for teaching in design dominated learning environments.
Resumo:
This study reported on the issues surrounding the acquisition of problem-solving competence of middle-year students who had been ascertained as above average in intelligence, but underachieving in problem-solving competence. In particular, it looked at the possible links between problem-posing skills development and improvements in problem-solving competence. A cohort of Year 7 students at a private, non-denominational, co-educational school was chosen as participants for the study, as they undertook a series of problem-posing sessions each week throughout a school term. The lessons were facilitated by the researcher in the students’ school setting. Two criteria were chosen to identify participants for this study. Firstly, each participant scored above the 60th percentile in the standardized Middle Years Ability Test (MYAT) (Australian Council for Educational Research, 2005) and secondly, the participants all scored below the cohort average for Criterion B (Problem-solving Criterion) in their school mathematics tests during the first semester of Year 7. Two mutually exclusive groups of participants were investigated with one constituting the Comparison Group and the other constituting the Intervention Group. The Comparison Group was chosen from a Year 7 cohort for whom no problem-posing intervention had occurred, while the Intervention Group was chosen from the Year 7 cohort of the following year. This second group received the problem-posing intervention in the form of a teaching experiment. That is, the Comparison Group were only pre-tested and post-tested, while the Intervention Group was involved in the teaching experiment and received the pre-testing and post-testing at the same time of the year, but in the following year, when the Comparison Group have moved on to the secondary part of the school. The groups were chosen from consecutive Year 7 cohorts to avoid cross-contamination of the data. A constructionist framework was adopted for this study that allowed the researcher to gain an “authentic understanding” of the changes that occurred in the development of problem-solving competence of the participants in the context of a classroom setting (Richardson, 1999). Qualitative and quantitative data were collected through a combination of methods including researcher observation and journal writing, video taping, student workbooks, informal student interviews, student surveys, and pre-testing and post-testing. This combination of methods was required to increase the validity of the study’s findings through triangulation of the data. The study findings showed that participation in problem-posing activities can facilitate the re-engagement of disengaged, middle-year mathematics students. In addition, participation in these activities can result in improved problem-solving competence and associated developmental learning changes. Some of the changes that were evident as a result of this study included improvements in self-regulation, increased integration of prior knowledge with new knowledge and increased and contextualised socialisation.
Resumo:
Interdisciplinary studies are fundamental to the signature practices for the middle years of schooling. Middle years researchers claim that interdisciplinarity in teaching appropriately meets the needs of early adolescents by tying concepts together, providing frameworks for the relevance of knowledge, and demonstrating the linking of disparate information for solution of novel problems. Cognitive research is not wholeheartedly supportive of this position. Learning theorists assert that application of knowledge in novel situations for the solution of problems is actually dependent on deep discipline based understandings. The present research contrasts the capabilities of early adolescent students from discipline based and interdisciplinary based curriculum schooling contexts to successfully solve multifaceted real world problems. This will inform the development of effective management of middle years of schooling curriculum.