890 resultados para Linear mixed model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In linear mixed models, model selection frequently includes the selection of random effects. Two versions of the Akaike information criterion (AIC) have been used, based either on the marginal or on the conditional distribution. We show that the marginal AIC is no longer an asymptotically unbiased estimator of the Akaike information, and in fact favours smaller models without random effects. For the conditional AIC, we show that ignoring estimation uncertainty in the random effects covariance matrix, as is common practice, induces a bias that leads to the selection of any random effect not predicted to be exactly zero. We derive an analytic representation of a corrected version of the conditional AIC, which avoids the high computational cost and imprecision of available numerical approximations. An implementation in an R package is provided. All theoretical results are illustrated in simulation studies, and their impact in practice is investigated in an analysis of childhood malnutrition in Zambia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper examines the effect of anisotropic growth on the evolution of mechanical stresses in a linear-elastic model of a growing, avascular tumour. This represents an important improvement on previous linear-elastic models of tissue growth since it has been shown recently that spatially-varying isotropic growth of linear-elastic tissues does not afford the necessary stress-relaxation for a steady-state stress distribution upon reaching a nutrient-regulated equilibrium size. Time-dependent numerical solutions are developed using a Lax-Wendroff scheme, which show the evolution of the tissue stress distributions over a period of growth until a steady-state is reached. These results are compared with the steady-state solutions predicted by the model equations, and key parameters influencing these steady-state distributions are identified. Recommendations for further extensions and applications of this model are proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Braking is a crucial driving task with a direct relationship with crash risk, as both excess and inadequate braking can lead to collisions. The objective of this study was to compare the braking profile of young drivers distracted by mobile phone conversations to non-distracted braking. In particular, the braking behaviour of drivers in response to a pedestrian entering a zebra crossing was examined using the CARRS-Q Advanced Driving Simulator. Thirty-two licensed drivers drove the simulator in three phone conditions: baseline (no phone conversation), hands-free, and handheld. In addition to driving the simulator, each participant completed questionnaires related to driver demographics, driving history, usage of mobile phones while driving, and general mobile phone usage history. The drivers were 18–26 years old and split evenly by gender. A linear mixed model analysis of braking profiles along the roadway before the pedestrian crossing revealed comparatively increased decelerations among distracted drivers, particularly during the initial 20 kph of deceleration. Drivers’ initial 20 kph deceleration time was modelled using a parametric accelerated failure time (AFT) hazard-based duration model with a Weibull distribution with clustered heterogeneity to account for the repeated measures experiment design. Factors found to significantly influence the braking task included vehicle dynamics variables like initial speed and maximum deceleration, phone condition, and driver-specific variables such as licence type, crash involvement history, and self-reported experience of using a mobile phone whilst driving. Distracted drivers on average appear to reduce the speed of their vehicle faster and more abruptly than non-distracted drivers, exhibiting excess braking comparatively and revealing perhaps risk compensation. The braking appears to be more aggressive for distracted drivers with provisional licenses compared to drivers with open licenses. Abrupt or excessive braking by distracted drivers might pose significant safety concerns to following vehicles in a traffic stream.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemical composition of rainwater changes from sea to inland under the influence of several major factors - topographic location of area, its distance from sea, annual rainfall. A model is developed here to quantify the variation in precipitation chemistry under the influence of inland distance and rainfall amount. Various sites in India categorized as 'urban', 'suburban' and 'rural' have been considered for model development. pH, HCO3, NO3 and Mg do not change much from coast to inland while, SO4 and Ca change is subjected to local emissions. Cl and Na originate solely from sea salinity and are the chemistry parameters in the model. Non-linear multiple regressions performed for the various categories revealed that both rainfall amount and precipitation chemistry obeyed a power law reduction with distance from sea. Cl and Na decrease rapidly for the first 100 km distance from sea, then decrease marginally for the next 100 km, and later stabilize. Regression parameters estimated for different cases were found to be consistent (R-2 similar to 0.8). Variation in one of the parameters accounted for urbanization. Model was validated using data points from the southern peninsular region of the country. Estimates are found to be within 99.9% confidence interval. Finally, this relationship between the three parameters - rainfall amount, coastline distance, and concentration (in terms of Cl and Na) was validated with experiments conducted in a small experimental watershed in the south-west India. Chemistry estimated using the model was in good correlation with observed values with a relative error of similar to 5%. Monthly variation in the chemistry is predicted from a downscaling model and then compared with the observed data. Hence, the model developed for rain chemistry is useful in estimating the concentrations at different spatio-temporal scales and is especially applicable for south-west region of India. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genetic models partitioning additive and non-additive genetic effects for populations tested in replicated multi-environment trials (METs) in a plant breeding program have recently been presented in the literature. For these data, the variance model involves the direct product of a large numerator relationship matrix A, and a complex structure for the genotype by environment interaction effects, generally of a factor analytic (FA) form. With MET data, we expect a high correlation in genotype rankings between environments, leading to non-positive definite covariance matrices. Estimation methods for reduced rank models have been derived for the FA formulation with independent genotypes, and we employ these estimation methods for the more complex case involving the numerator relationship matrix. We examine the performance of differing genetic models for MET data with an embedded pedigree structure, and consider the magnitude of the non-additive variance. The capacity of existing software packages to fit these complex models is largely due to the use of the sparse matrix methodology and the average information algorithm. Here, we present an extension to the standard formulation necessary for estimation with a factor analytic structure across multiple environments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

He propose a new time domain method for efficient representation of the KCG and delineation of its component waves. The method is based on the multipulse Linear prediction (LP) coding which is being widely used in speech processing. The excitation to the LP synthesis filter consists of a few pulses defined by their locations and amplitudes. Based on the amplitudes and their distribution, the pulses are suitably combined to delineate the component waves. Beat to beat correlation in the ECG signal is used in QRS periodicity prediction. The method entails a data compression of 1 in 6. The method reconstructs the signal with an NMSE of less than 5%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We provide new analytical results concerning the spread of information or influence under the linear threshold social network model introduced by Kempe et al. in, in the information dissemination context. The seeder starts by providing the message to a set of initial nodes and is interested in maximizing the number of nodes that will receive the message ultimately. A node's decision to forward the message depends on the set of nodes from which it has received the message. Under the linear threshold model, the decision to forward the information depends on the comparison of the total influence of the nodes from which a node has received the packet with its own threshold of influence. We derive analytical expressions for the expected number of nodes that receive the message ultimately, as a function of the initial set of nodes, for a generic network. We show that the problem can be recast in the framework of Markov chains. We then use the analytical expression to gain insights into information dissemination in some simple network topologies such as the star, ring, mesh and on acyclic graphs. We also derive the optimal initial set in the above networks, and also hint at general heuristics for picking a good initial set.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Contrary to the actual nonlinear Glauber model, the linear Glauber model (LGM) is exactly solvable, although the detailed balance condition is not generally satisfied. This motivates us to address the issue of writing the transition rate () in a best possible linear form such that the mean squared error in satisfying the detailed balance condition is least. The advantage of this work is that, by studying the LGM analytically, we will be able to anticipate how the kinetic properties of an arbitrary Ising system depend on the temperature and the coupling constants. The analytical expressions for the optimal values of the parameters involved in the linear are obtained using a simple Moore-Penrose pseudoinverse matrix. This approach is quite general, in principle applicable to any system and can reproduce the exact results for one dimensional Ising system. In the continuum limit, we get a linear time-dependent Ginzburg-Landau equation from the Glauber's microscopic model of non-conservative dynamics. We analyze the critical and dynamic properties of the model, and show that most of the important results obtained in different studies can be reproduced by our new mathematical approach. We will also show in this paper that the effect of magnetic field can easily be studied within our approach; in particular, we show that the inverse of relaxation time changes quadratically with (weak) magnetic field and that the fluctuation-dissipation theorem is valid for our model.