944 resultados para Learning Capabilities
Resumo:
Electricity markets are complex environments, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. MASCEM (Multi-Agent System for Competitive Electricity Markets) is a multi-agent electricity market simulator that models market players and simulates their operation in the market. Market players are entities with specific characteristics and objectives, making their decisions and interacting with other players. This paper presents a methodology to provide decision support to electricity market negotiating players. This model allows integrating different strategic approaches for electricity market negotiations, and choosing the most appropriate one at each time, for each different negotiation context. This methodology is integrated in ALBidS (Adaptive Learning strategic Bidding System) – a multiagent system that provides decision support to MASCEM's negotiating agents so that they can properly achieve their goals. ALBidS uses artificial intelligence methodologies and data analysis algorithms to provide effective adaptive learning capabilities to such negotiating entities. The main contribution is provided by a methodology that combines several distinct strategies to build actions proposals, so that the best can be chosen at each time, depending on the context and simulation circumstances. The choosing process includes reinforcement learning algorithms, a mechanism for negotiating contexts analysis, a mechanism for the management of the efficiency/effectiveness balance of the system, and a mechanism for competitor players' profiles definition.
Resumo:
Sociable robots are embodied agents that are part of a heterogeneous society of robots and humans. They Should be able to recognize human beings and each other, and to engage in social, interactions. The use of a robotic architecture may strongly reduce the time and effort required to construct a sociable robot. Such architecture must have structures and mechanisms to allow social interaction. behavior control and learning from environment. Learning processes described oil Science of Behavior Analysis may lead to the development of promising methods and Structures for constructing robots able to behave socially and learn through interactions from the environment by a process of contingency learning. In this paper, we present a robotic architecture inspired from Behavior Analysis. Methods and structures of the proposed architecture, including a hybrid knowledge representation. are presented and discussed. The architecture has been evaluated in the context of a nontrivial real problem: the learning of the shared attention, employing an interactive robotic head. The learning capabilities of this architecture have been analyzed by observing the robot interacting with the human and the environment. The obtained results show that the robotic architecture is able to produce appropriate behavior and to learn from social interaction. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Shared attention is a type of communication very important among human beings. It is sometimes reserved for the more complex form of communication being constituted by a sequence of four steps: mutual gaze, gaze following, imperative pointing and declarative pointing. Some approaches have been proposed in Human-Robot Interaction area to solve part of shared attention process, that is, the most of works proposed try to solve the first two steps. Models based on temporal difference, neural networks, probabilistic and reinforcement learning are methods used in several works. In this article, we are presenting a robotic architecture that provides a robot or agent, the capacity of learning mutual gaze, gaze following and declarative pointing using a robotic head interacting with a caregiver. Three learning methods have been incorporated to this architecture and a comparison of their performance has been done to find the most adequate to be used in real experiment. The learning capabilities of this architecture have been analyzed by observing the robot interacting with the human in a controlled environment. The experimental results show that the robotic head is able to produce appropriate behavior and to learn from sociable interaction.
Resumo:
Cooperative systems are suitable for many types of applications and nowadays these system are vastly used to improve a previously defined system or to coordinate multiple devices working together. This paper provides an alternative to improve the reliability of a previous intelligent identification system. The proposed approach implements a cooperative model based on multi-agent architecture. This new system is composed of several radar-based systems which identify a detected object and transmit its own partial result by implementing several agents and by using a wireless network to transfer data. The proposed topology is a centralized architecture where the coordinator device is in charge of providing the final identification result depending on the group behavior. In order to find the final outcome, three different mechanisms are introduced. The simplest one is based on majority voting whereas the others use two different weighting voting procedures, both providing the system with learning capabilities. Using an appropriate network configuration, the success rate can be improved from the initial 80% up to more than 90%.
Resumo:
A manager's perception of industry structure (dynamism) has the potential to impact various organizational strategies and behaviors. This may be particularly so with regard to perceptions driving organizational learning orientations and innovation based marketing strategy. The position taken here suggests that firms operating within a competitive industry tend to pursue innovative ways of performing value-creating activities, which requires the development of learning capabilities. The results of a study of SMEs suggest that market focused learning, relative to other learning capabilities plays a key role in the relationships between industry structure, innovation and brand performance. The findings also show that market focused learning and internally focused learning influence innovation and that innovation influences a brand's performance. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Purpose: The purpose of this paper is to examine the impact of globalisation on corporate real estate strategies. Specifically, it seeks to identify corporate real estate capabilities that are important in a hypercompetitive business climate. ---------- Design/methodology/approach: This paper utilises a qualitative approach to analyse secondary data in order to identify the corporate real estate capabilities for a hypercompetitive business environment. ---------- Findings: Globalisation today is an undeniable phenomenon that is fundamentally changing the way business is conducted. In the light of global hypercompetition, corporate real estate needs to develop new capabilities to support global business strategies. These include flexibility, network organization and managerial learning capabilities. ---------- Research limitations/implications: This is a conceptual paper and future empirical research needs to be conducted to verify the propositions made in this paper. ---------- Practical implications: Given the new level of uncertainty in the business climate, that is, hypercompetition, businesses need to develop dynamic capabilities that are harder for competitors to imitate in order to maintain what is considered a “momentary” competitive advantage. The findings of this paper are useful to guide corporate real estate managers in this regard. ---------- Originality/value:– This paper is original in two ways. First, it applies the strategic management concept of capabilities to corporate real estate. Second, it links the key challenge that businesses face today, i.e. globalisation, to the concept of capabilities as a means to maintain competitive advantage.
Resumo:
In this article we develop a hierarchical framework of ordinary capabilities, dynamic functional capabilities, and dynamic learning capabilities. These three levels of capabilities differ across four interdependent internal dimensions of predominant resources, routine patterning, learning, and strategic intent. The levels are also influenced by external environmental velocity. This framework progresses the ongoing debate surrounding the capability hierarchy and offers a novel view of capabilities. We also provide direction regarding how the framework can lead future research toward a validated measurable model that contributes to solving the definitional and associated measurement debates around ordinary and dynamic capabilities.
Resumo:
This paper explores the endeavours of five small firms to develop web-based commerce capabilities within their existing operations. The focus is upon the strategic acquisition and exploitation of knowledge which underpins new value creating activates related to web-based commerce. A normative web-based commerce adoption model developed from a review of the extant literature related to electronic marketing, entrepreneurship, and the diffusion of new innovations was empirically tested. A multiple case study design enabled the exploration of contemporary marketing and entrepreneurship issues within the real life context of five small firms. The model aimed to emphasis best-practice adoption methods emphasizing the value of a firm's market orientation and entrepreneurial capabilities. A preliminary test of the model's theoretical contentions lent support to its overall focus, but found that the firm's existing learning capabilities were diminished during the adoption of web-based commerce, and that a lack of vision and prior knowledge produced sub-optimal adoption outcomes.
Resumo:
Fundamental to the development of new customer value offerings via web-based commerce is a small firm's ability to strategically acquire and exploit knowledge. The focus of this paper is the empirical testing of a normative web-based commerce adoption model developed from a review of the extant literature related to electronic marketing, the Internet and the diffusion of new innovations. A preliminary test of the model's theoretical contentions lent support to its overall focus, but found that the firm's existing learning capabilities were diminished during the adoption of web-based commerce. Consequently, sub-optimal adoption outcomes were associated with insufficient knowledge development.
Resumo:
Most associative memory models perform one level mapping between predefined sets of input and output patterns1 and are unable to represent hierarchical knowledge. Complex AI systems allow hierarchical representation of concepts, but generally do not have learning capabilities. In this paper, a memory model is proposed which forms concept hierarchy by learning sample relations between concepts. All concepts are represented in a concept layer. Relations between a concept and its defining lower level concepts, are chunked as cognitive codes represented in a coding layer. By updating memory contents in the concept layer through code firing in the coding layer, the system is able to perform an important class of commonsense reasoning, namely recognition and inheritance.
Resumo:
Competitive electricity markets are complex environments, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. MASCEM is an electricity market simulator able to model market players and simulate their operation in the market. As market players are complex entities, having their characteristics and objectives, making their decisions and interacting with other players, a multi-agent architecture is used and proved to be adequate. MASCEM players have learning capabilities and different risk preferences. They are able to refine their strategies according to their past experience (both real and simulated) and considering other agents’ behavior. Agents’ behavior is also subject to its risk preferences.
Resumo:
Explaining the diversity of languages across the world is one of the central aims of typological, historical, and evolutionary linguistics. We consider the effect of language contact-the number of non-native speakers a language has-on the way languages change and evolve. By analysing hundreds of languages within and across language families, regions, and text types, we show that languages with greater levels of contact typically employ fewer word forms to encode the same information content (a property we refer to as lexical diversity). Based on three types of statistical analyses, we demonstrate that this variance can in part be explained by the impact of non-native speakers on information encoding strategies. Finally, we argue that languages are information encoding systems shaped by the varying needs of their speakers. Language evolution and change should be modeled as the co-evolution of multiple intertwined adaptive systems: On one hand, the structure of human societies and human learning capabilities, and on the other, the structure of language.
Resumo:
Includes bibliography
Aplicação de redes NeuroFuzzy ao processamento de peças automotivas por meio de injeção de polímeros
Resumo:
The injection molding of automotive parts is a complex process due to the many non-linear and multivariable phenomena that occur simultaneously. Commercial software applications exist for modeling the parameters of polymer injection but can be prohibitively expensive. It is possible to identify these parameters analytically, but applying classical theories of transport phenomena requires accurate information about the injection machine, product geometry, and process parameters. However, neurofuzzy networks, which achieve a synergy by combining the learning capabilities of an artificial neural network with a fuzzy set's inference mechanism, have shown success in this field. The purpose of this paper was to use a multilayer perceptron artificial neural network and a radial basis function artificial neural network combined with fuzzy sets to produce an inference mechanism that could predict injection mold cycle times. The results confirmed neurofuzzy networks as an effective alternative to solving such problems.
Resumo:
In this thesis we made the first steps towards the systematic application of a methodology for automatically building formal models of complex biological systems. Such a methodology could be useful also to design artificial systems possessing desirable properties such as robustness and evolvability. The approach we follow in this thesis is to manipulate formal models by means of adaptive search methods called metaheuristics. In the first part of the thesis we develop state-of-the-art hybrid metaheuristic algorithms to tackle two important problems in genomics, namely, the Haplotype Inference by parsimony and the Founder Sequence Reconstruction Problem. We compare our algorithms with other effective techniques in the literature, we show strength and limitations of our approaches to various problem formulations and, finally, we propose further enhancements that could possibly improve the performance of our algorithms and widen their applicability. In the second part, we concentrate on Boolean network (BN) models of gene regulatory networks (GRNs). We detail our automatic design methodology and apply it to four use cases which correspond to different design criteria and address some limitations of GRN modeling by BNs. Finally, we tackle the Density Classification Problem with the aim of showing the learning capabilities of BNs. Experimental evaluation of this methodology shows its efficacy in producing network that meet our design criteria. Our results, coherently to what has been found in other works, also suggest that networks manipulated by a search process exhibit a mixture of characteristics typical of different dynamical regimes.