980 resultados para Hydrogen Quantum Electron Bohr
Resumo:
We report a comprehensive study of weak-localization and electron-electron interaction effects in a GaAs/InGaAs two-dimensional electron system with nearby InAs quantum dots, using measurements of the electrical conductivity with and without magnetic field. Although both the effects introduce temperature dependent corrections to the zero magnetic field conductivity at low temperatures, the magnetic field dependence of conductivity is dominated by the weak-localization correction. We observed that the electron dephasing scattering rate tau(-1)(phi), obtained from the magnetoconductivity data, is enhanced by introducing quantum dots in the structure, as expected, and obeys a linear dependence on the temperature and elastic mean free path, which is against the Fermi-liquid model. (c) 2008 American Institute of Physics. [DOI: 10.1063/1.2996034]
Resumo:
We study the transport properties of HgTe-based quantum wells containing simultaneously electrons and holes in a magnetic field B. At the charge neutrality point (CNP) with nearly equal electron and hole densities, the resistance is found to increase very strongly with B while the Hall resistivity turns to zero. This behavior results in a wide plateau in the Hall conductivity sigma(xy) approximate to 0 and in a minimum of diagonal conductivity sigma(xx) at nu = nu(p) - nu(n) = 0, where nu(n) and nu(p) are the electron and hole Landau level filling factors. We suggest that the transport at the CNP point is determined by electron-hole ""snake states'' propagating along the nu = 0 lines. Our observations are qualitatively similar to the quantum Hall effect in graphene as well as to the transport in a random magnetic field with a zero mean value.
Resumo:
We observe a large positive magnetoresistance in a bilayer electron system (double quantum well) as the latter is driven by the external gate from double to single layer configuration. Both classical and quantum contributions to magnetotransport are found to be important for explanation of this effect. We demonstrate that these contributions can be separated experimentally by studying the magnetic-field dependence of the resistance at different gate voltages. The experimental results are analyzed and described by using the theory of low-field magnetotransport in the systems with two occupied subbands.
Resumo:
The electron spin precession about an external magnetic field was studied by Faraday rotation on an inhomogeneous ensemble of singly charged, self-assembled (In,Ga)As/GaAs quantum dots. From the data the dependence of electron g-factor on optical transition energy was derived. A comparison with literature reports shows that the electron g-factors are quite similar for quantum dots with very different geometrical parameters, and their change with transition energy is almost identical. (C) 2011 American Institute of Physics. [doi:10.1063/1.3588413]
Resumo:
We report electron-paramagnetic resonance (EPR) studies at similar to 9.5 GHz (X band) and similar to 34 GHz (Q band) of powder and single-crystal samples of the compound Cu(2)[TzTs](4) [N-thiazol-2-yl-toluenesulfonamidatecopper(II)], C(40)H(36)Cu(2)N(8)O(8)S(8), having copper(II) ions in dinuclear units. Our data allow determining an antiferromagnetic interaction J(0)=(-113 +/- 1) cm(-1) (H(ex)=-J(0)S(1)center dot S(2)) between Cu(II) ions in the dinuclear unit and the anisotropic contributions to the spin-spin coupling matrix D (H(ani)=S(1)center dot D center dot S(2)), a traceless symmetric matrix with principal values D/4=(0.198 +/- 0.003) cm(-1) and E/4=(0.001 +/- 0.003) cm(-1) arising from magnetic dipole-dipole and anisotropic exchange couplings within the units. In addition, the single-crystal EPR measurements allow detecting and estimating very weak exchange couplings between neighbor dinuclear units, with an estimated magnitude parallel to J(')parallel to=(0.060 +/- 0.015) cm(-1). The interactions between a dinuclear unit and the ""environment"" of similar units in the structure of the compound produce a spin dynamics that averages out the intradinuclear dipolar interactions. This coupling with the environment leads to decoherence, a quantum phase transition that collapses the dipolar interaction when the isotropic exchange coupling with neighbor dinuclear units equals the magnitude of the intradinuclear dipolar coupling. Our EPR experiments provide a new procedure to follow the classical exchange-narrowing process as a shift and collapse of the line structure (not only as a change of the resonance width), which is described with general (but otherwise simple) theories of magnetic resonance. Using complementary procedures, our EPR measurements in powder and single-crystal samples allow measuring simultaneously three types of interactions differing by more than three orders of magnitude (between 113 cm(-1) and 0.060 cm(-1)).
Resumo:
We introduce an analytical approximation scheme to diagonalize parabolically confined two-dimensional (2D) electron systems with both the Rashba and Dresselhaus spin-orbit interactions. The starting point of our perturbative expansion is a zeroth-order Hamiltonian for an electron confined in a quantum wire with an effective spin-orbit induced magnetic field along the wire, obtained by properly rotating the usual spin-orbit Hamiltonian. We find that the spin-orbit-related transverse coupling terms can be recast into two parts W and V, which couple crossing and noncrossing adjacent transverse modes, respectively. Interestingly, the zeroth-order Hamiltonian together with W can be solved exactly, as it maps onto the Jaynes-Cummings model of quantum optics. We treat the V coupling by performing a Schrieffer-Wolff transformation. This allows us to obtain an effective Hamiltonian to third order in the coupling strength k(R)l of V, which can be straightforwardly diagonalized via an additional unitary transformation. We also apply our approach to other types of effective parabolic confinement, e. g., 2D electrons in a perpendicular magnetic field. To demonstrate the usefulness of our approximate eigensolutions, we obtain analytical expressions for the nth Landau-level g(n) factors in the presence of both Rashba and Dresselhaus couplings. For small values of the bulk g factors, we find that spin-orbit effects cancel out entirely for particular values of the spin-orbit couplings. By solving simple transcendental equations we also obtain the band minima of a Rashba-coupled quantum wire as a function of an external magnetic field. These can be used to describe Shubnikov-de Haas oscillations. This procedure makes it easier to extract the strength of the spin-orbit interaction in these systems via proper fitting of the data.
Resumo:
Quantum molecular similarity (QMS) techniques are used to assess the response of the electron density of various small molecules to application of a static, uniform electric field. Likewise, QMS is used to analyze the changes in electron density generated by the process of floating a basis set. The results obtained show an interrelation between the floating process, the optimum geometry, and the presence of an external field. Cases involving the Le Chatelier principle are discussed, and an insight on the changes of bond critical point properties, self-similarity values and density differences is performed
Resumo:
Gas chromatography (GC) is an analytical tool very useful to investigate the composition of gaseous mixtures. However, hydrogen (H2) detection after a GC separation is only possible with a Thermal Conductivity Detector (TCD), a Helium Ionisation Detector (HID) or expensive Atomic Emission Detector (AED). Recently, indirect H2 detection by GC coupled to mass spectrometry (MS) was demonstrated but the mechanism of carrier gas protonation remained unclear. With electron impact as ionisation source of MS and helium (He) as GC carrier gas, H2 is not ionised according the expected Penning ionisation neither according to the Associative ionisation. Rearrangement ionisation (RI) was found to be the main channel for H2 and D2 ionisation under GC-MS conditions used in most of laboratories using GC-MS, leading to the formation of [He−H]+ and [He−D]+ ions.
Resumo:
An efficient method is developed for an iterative solution of the Poisson and Schro¿dinger equations, which allows systematic studies of the properties of the electron gas in linear deep-etched quantum wires. A much simpler two-dimensional (2D) approximation is developed that accurately reproduces the results of the 3D calculations. A 2D Thomas-Fermi approximation is then derived, and shown to give a good account of average properties. Further, we prove that an analytic form due to Shikin et al. is a good approximation to the electron density given by the self-consistent methods.
Resumo:
Recent measurements of electron escape from a nonequilibrium charged quantum dot are interpreted within a two-dimensional (2D) separable model. The confining potential is derived from 3D self-consistent Poisson-Thomas-Fermi calculations. It is found that the sequence of decay lifetimes provides a sensitive test of the confining potential and its dependence on electron occupation
Resumo:
The ground state structure of few-electron concentric double quantum rings is investigated within the local spin density approximation. Signatures of inter-ring coupling in the addition energy spectrum are identified and discussed. We show that the electronic configurations in these structures can be greatly modulated by the inter-ring distance: At short and long distances the low-lying electron states localize in the inner and outer rings, respectively, and the energy structure is essentially that of an isolated single quantum ring. However, at intermediate distances the electron states localized in the inner and the outer ring become quasidegenerate and a rather entangled, strongly-correlated system is formed.
Resumo:
We have investigated the dipole charge- and spin-density response of few-electron two-dimensional concentric nanorings as a function of the intensity of a erpendicularly applied magnetic field. We show that the dipole response displays signatures associated with the localization of electron states in the inner and outer ring favored by the perpendicularly applied magnetic field. Electron localization produces a more fragmented spectrum due to the appearance of additional edge excitations in the inner and outer ring.
Resumo:
The atomic shell structure can be observed by inspecting the experimental periodic properties of the Periodic Table. The (quantum) shell structure emerges from these properties and in this way quantum mechanics can be explicitly shown considering the (semi-)quantitative periodic properties. These periodic properties can be obtained with a simple effective Bohr model. An effective Bohr model with an effective quantum defect (u) was considered as a probe in order to show the quantum structure embedded in the Periodic Table. u(Z) shows a quasi-smoothed dependence of Z, i.e., u(Z) ≈ Z2/5 - 1.