971 resultados para HYDROSTATIC-PRESSURE
Resumo:
Optical spectra of CdSe nanocrystals are measured at room temperature under pressure ranging from 0 to 5.2 GPa. The exciton energies shift linearly with pressure below 5.2 GPa. The pressure coefficient is 27 meV GPa(-1) for small CdSe nanocrystals with the radius of 2.4 nm. With the approximation of a rigid-atomic pseudopotential, the pressure coefficients of the energy band are calculated. By using the hole effective-mass Hamiltonian for the semiconductors with wurtzite structure under various pressures, we study the exciton states and optical spectra for CdSe nanocrystals under hydrostatic pressure in detail. The intrinsic asymmetry of the hexagonal lattice structure and the effect of spin-orbit coupling on the hole states are investigated. The Coulomb interaction of the exciton states is also taken into account. It is found that the theoretical results are in good agreement with the experimental values.
Resumo:
The current-voltage (I-V) characteristics of a doped weakly coupled GaAs/AlAs superlattice (SL) with narrow barriers are measured under hydrostatic pressure from 1 bar to 13.5 kbar at both 77 and 300 K. The experimental results show that, contrary to the results in SL with wide barriers, the plateau in the I-V curve at 77 K does not shrink with increasing pressure, and becomes wider after 10.5 kbar. It is explained by the fact that the E-Gamma 1-E-Gamma 1 resonance peak is higher than the E-Gamma 1-E-X1 resonance peak. At 300 K, however, because of the more important contribution of the nonresonant component to the current, the plateau shrinks with increasing pressure. (C) 1999 American Institute of Physics. [S0021-8979(99)02008-3].
Resumo:
The behavior of room temperature self-sustained current oscillations resulting from sequential resonance tunneling in a doped weakly-coupled GaAs/AlAs superlattice (SL) is investigated under hydrostatic pressure. From atmosphere pressure to 6.5 kbar, oscillations exist in the whole plateau of the I-V curve and oscillating characteristics are affected by the pressure. When hydrostatic pressure is higher than 6.5 kbar, the current oscillations are completely suppressed although a current plateau still can be seen in the I-V curve. The plateau disappears when the pressure is close to 13.5 kbar. As the main effect of hydrostatic pressure is to lower the X point valley with respect to Gamma point valley, the disappearance of oscillation and the plateau shrinkage before Gamma - X resonance takes place are attributed to the increases of thermoionic emission and nonresonant tunneling components determined by the lowest Gamma - X barrier height in GaAs/AlAs SL structure.
Resumo:
The photoluminescence of Cd1-xMnxTe with x=0.25, 0.40, and 0.60 is investigated at 77 K and different pressures. The pressure coefficients of the photoluminescence bands Cd0.75Mn0.25Te and Cd0.6Mn0.4Te are found to be positive and the magnitudes are about 8 X 10(-3) eV/kbar, which is in good agreement with the pressure coefficients of the interband transition. The pressure coefficient of the photoluminescence bands for Cd0.4Mn0.6Te is found to be -6 X 10(-3) eV/kbar, which is quite different from the pressure coefficient of the interband transition. The possible transition mechanism is discussed in terms of group theory and crystal field theory.
Resumo:
The photoluminescence from InxG1-xAs/GaAs strained quantum wells with thickness from 30 to 160 angstrom have been studied at 77 K under hydrostatic pressure up to 60 kbar. It was found that the pressure coefficients of the exciton peaks corresponding to transitions from the first conduction subband to the heavy-hole subband increased with reduced well width, in contrast to the case of GaAs/AlxGa1-xAs quantum wells. Calculations revealed that the increased barrier height with pressure was the major cause of the change in the pressure coefficients. Two peaks related to indirect transitions were observed at pressures higher than 50 kbar. They are attributed to type-I transitions from the lowest conduction-band edge, which are the strain splitted X(xy) valleys, to the heavy-hole subband in the InxGa1-xAs well.
Resumo:
Photoluminescence of GaInP epilayers under hydrostatic pressure is investigated. The Gamma valley of disordered GaInP shifts sublinearly upwards with respect to the top of the valence band with increasing pressure and this sublinearity is caused by the nonlinear dependence of lattice constant on the hydrostatic pressure. The Gamma valleys of ordered GaInP epilayers rise slower than that of the disordered one. Considering the interactions between the Gamma valley and folded L and X valleys, the pressure dependence of the band gap of ordered GaInP is calculated and fitted. The results demonstrate that not only ordering along [111] directions but also sometimes simultaneous ordering along [111] and [100] directions can occur in ordered GaInP. (C) 1996 American Institute of Physics.
Resumo:
A simple method was developed for injecting a sample on a cross-form microfluidic chip by means of hydrostatic pressure combined with electrokinetic forces. The hydrostatic pressure was generated simply by adjusting the liquid level in different reservoirs without any additional driven equipment such as a pump. Two dispensing strategies using a floating injection and a gated injection, coupled with hydrostatic pressure loading, were tested. The fluorescence observation verified the feasibility of hydrostatic pressure loading in the separation of a mixture of fluorescein sodium salt and fluorescein isothiocyanate. This method was proved to be effective in leading cells to a separation channel for single cell analysis.
Resumo:
Indirect immunofluorescence staining was used to detect cytological changes of isolated blastodisks during mitosis of flounder haploid eggs treated with hydrostatic pressure. Changes in microtubule structure and expected cleavage suppression were observed from blastodisk formation to the third cell cycle, with obvious differences between treated and control eggs. In most eggs, microtubules were disassembled and the nucleation capacity of the centrosome was temporarily inhibited after pressure treatment. Within 15-20 min after treatment, the nucleation capacity of the centrosome began to gradually recover, with slow regeneration of microtubules; approximately 25 min after treatment, the nucleation capacity of the centrosome recovered completely, regenerated distinct bipolar spindles, and the first mitosis ensued. During the second cell cycle, approximately 61% of the embryos were at the two-cell stage, with a monopolar spindle in each blastomere; that treatment was effective was based on second cleavage blockage. Approximately 15% of the eggs still remained at the one-cell stage and had a monopolar spindle (treatment was effective, according to the general model of first cleavage blockage). However, treatment was ineffective in approximately 15% of the embryos (bipolar spindle in each blastomeres) and in another 8% (bipolar spindle in one of the two blastomeres and a monopolar spindle in the other; both mechanisms operating in different parts of the embryo). This is the first report elucidating mitotic gynogenetic diploid induction by hydrostatic pressure in marine fishes and provides a cytological basis for developing an efficient method of inducing mitotic gynogenesis in olive flounder. (C) 2007 Elsevier Inc. All rights reserved.