998 resultados para GaAs material


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The optical properties of GaAs/AlGaAs thin films with photonic crystals were investigated by measuring their photoluminescence spectra. The spectral intensities, lifetimes, and quantum efficiencies decreased greatly compared with those in blank material without photonic crystals. The quantum efficiencies in the material were also calculated from spectral intensities and lifetimes and the quantum efficiencies calculated from those two methods agreed with each other to some extent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on the fabrication of the nanowires with InGaAs/GaAs heterostructures on the GaAs(111) B substrate using selective-area metal organic vapor phase epitaxy. Fabry-Perot microcavity modes were observed in the nanowires with perfect end facets dispersed onto the silicon substrate and not observed in the free-standing nanowires. We find that the calculated group refractive indices only considering the material dispersion do not agree with the experimentally determined values although this method was used by some researchers. The calculated group refractive indices considering both the material dispersion and the waveguide dispersion agree with the experimentally determined values well. We also find that Fabry-Perot microcavity modes are not observable in the nanowires with the width less than about 180 nm, which is mainly caused by their poor reflectivity at the end facets due to their weak confinement to the optical field. (C) 2009 Optical Society of America

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The photoluminescence (PL) characteristics of GaAsSbN/GaAs epilayers grown by molecular beam epitaxy (MBE) are carefully investigated. The results show that antimony (Sb) incorporation into GaNAs material has less influence on the N-induced localization states. For the same N concentration, GaAsSbN material can reach an emission wavelength near 1.3 mum more easily than GaInNAs material. The rapid thermal annealing (RTA) experiment shows that the annealing induced rearrangement of atoms and related blueshift in GaAsSbN epilayers are smaller than those in GaNAs and GaInNAs epilayers. The GaAsSbN material can keep a longer emission wavelength near 1.3 mum-emission even after the annealing treatment. Raman spectroscopy analysis gives further insight into the structure stability of GaAsSbN material after annealing. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A columnal islands system, which was composed of three layers of self-assembled InAs/GaAs quantum dots (QDs), has been fabricated by solid-source molecular beam epitaxy (MBE) through S-K mode on a (100) semi-insulating GaAs substrate. The effects of the thickness of GaAs space layer, the growth interruption time and the amount of InAs deposition on the emission wavelength of columnal islands were presented. The image of atomic force microscopy (AFM) indicated the columnal islands with high uniformity in size and shape. At room temperature, the emission wavelength of columnal islands with different effective heights was achieved 1.32 and 1.4 mum; however, the emission wavelength of single-layer QDs with normal height was just 1. l mum. It provides a useful and intuitive approach to artificially control the emission wavelength of a QD material system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermal annealing effect on InAs quantum dots grown on vicinal (100) GaAs substrates is studied in comparison with dots on exact (100) GaAs substrates. We find that annealing acts stronger effect on dots with vicinal substrates by greatly accelerating the degradation of material quality. as well as slightly increasing the blueshift of the emission wavelength and the narrowing of PL linewidth. It is attributed to the higher strain in the dots formed on the vicinal substrates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A theoretical study on 1.3 mu m GaAs-based quantum dot vertical-cavity surface-emitting lasers (VCSELs) was made. Investigation of the influence of VCSELs on the optical confinement factors and the optical loss and the calculation of the material gain of the assembled InGaAs/GaAs quantum dots. Analysis of the threshold characteristic was made and the multi-wavelength cavity and multilayer quantum-dot stack structure is found to be more suitable for quantum dot VCSELs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of GaAS(1 0 0)2 degrees substrate misorientation on the formation and optical properties of InAs quantum dots (QDs) has been studied in compare with dots on exact GaAs(1 0 0) substrates. It is shown that, while QDs on exact substrates have only one dominant size, dots on misoriented substrates are formed in lines with a clear bimodal size distribution. Room temperature photoluminescence measurements show that QDs on misoriented substrates have narrower FWHM, longer emission wavelength and much larger PL intensity relative to those of dots on exact substrates. However, our rapid thermal annealing (RTA) experiments indicate that annealing shows a stronger effect on dots with misoriented substrates by greatly accelerating the degradation of material quality. (c) 2005 Elsevier B.V All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the effect of rapid thermal annealing on InGaNAs/GaAs quantum wells. At optimized annealing temperatures and times, the greatest enhancement of the photoluminescence intensity is obtained by a special two-step annealing process. To identify the mechanism affecting the material quality during the rapid thermal annealing, differential temperature analysis is applied, and temperature- and power-dependent photoluminescence is carried out on the samples annealed under different conditions. Our experiment reveals that some composition redistribution or other related ordering process may occur in the quantum-well layer during annealing. Annealing at a lower temperature for a long time primarily can remove defects and dislocations while annealing at a higher temperature for a short time primarily homogenizes the composition in the quantum wells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High (42.5%) indium content GaInNAs/GaAs quantum wells with room temperature emission wavelength from 1.3 mu m to 1.5 mu m range were successfully grown by Radio Frequency Plasma Nitrogen source assisted Molecular Beam Epitaxy. The growth parameters of plasma power and N-2 How rate were optimized systematically to improve the material quality. Photoluminescence and transmission electron microscopy measurements showed that the optical and crystal quality of the 1.54 mu m GaInNAs/GaAs QWs was kept as comparable as that in 1.31 mu m.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quasi-continuous-wave operation of GaAs/AlGaAs quantum-cascade lasers with high average optical power is demonstrated. Double X-ray diffraction has been used to investigate the quality of the epitaxial material. The compositional gradients and the interface quality are controlled effectively. The corrected average power of per facet about 17 mW and temperature tuning coefficient of the gain peak about 0.91 nm/K from 83 K to 140 K is achieved in pulse operation. Best value of threshold current density is less than 3.0 kA/cm(2) at 83 K. (C) 2005 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of systematic experiments on the growth of high quality GaNAs strained layers on GaAs (001) substrate have been carried out by using DC active Nz plasma, assisted molecular beam epitaxy. The samples of GaNAs between 3 and 200 nm thick were evaluated by double crystal X-ray diffraction (XRD) and photoluminescence (PL) measurements. PL and XRD measurements for these samples are in good agreement. Some material growth and structure parameters affecting the properties of GaNAs/GaAs heterostructure were studied; they were: (1) growth temperature of GaNAs epilayer; (2) electrical current of active N-2 plasma; (3) Nz flow rate; (4) GaNAs growth rate; (5) the thickness of GaNAs strained layer. XRD and PL measurements showed that superlattice with distinct satellite peaks up to two orders and quantum well structure with intensity at 22 meV Fourier transform infrared spectroscopy (FWHM) can be achieved in molecular beam epitaxy (MBE) system. (C) 2000 Published by Elsevier Science S.A. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel composite InxGa1-xAs/GaAs/GaAs/AlxGa1-xAs multiple quantum well material with different well widths was studied as a new kind of photoelectrode in a photoelectrochemical cell. The photocurrent spectrum and photocurrent-electrode potential curve were measured in ferrocene nonaqueous solution. Pronounced quantization effects and strong exciton absorption were observed in the photocurrent spectrum. The effects of surface states and interfacial states on the photocurrent-electrode potential curve are discussed. (C) 2000 Elsevier Science S.A. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Postgrowth rapid thermal annealing was performed on InGaAs/GaAs quantum dots grown by molecular beam epitaxy. The blue shift of the emission peak and the narrowing of the luminescence line width are observed at lower annealing temperature. However, when the annealing temperature is increased to 850 degrees C, the emission line width becomes larger. The TEM image of this sample shows that the surface becomes rough, and some large clusters are formed, which is due to the interdiffusion of In, Ga atoms at the InGaAs/GaAs interface and to the strain relaxation. The material is found to degrade dramatically when the annealing temperature is further increased to 900 degrees C, while emission from quantum dots can still be detected, along with the appearance of the emission from excited state. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Epitaxial layers of cubic GaN have been grown by metalorganic vapor-phase epitaxy (MOVPE) with Si-doping carrier concentration ranging from 3 x 10(18) to 2.4 x 10(20)/cm(3). Si-doping decreased the yellow emission of GaN. However, the heavily doped n-type material has been found to induce phase transformation. As the Si-doping concentration increases, the hexagonal GaN nanoparticles increase. Judged from the linewidth of X-ray rocking curve, Si-doping increases the density of dislocations and stacking faults. Based on these observations, a model is proposed to interpret the phase transformation induced by the generated microdefects, such as dislocations and precipitates, and induced stacking faults under heavy Si-doping. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cubic GaN films were grown on GaAs(1 0 0) substrates by low-pressure metalorganic vapor-phase epitaxy at high temperature. We have found a nonlinear relation between GaN film thickness and growth timer and this nonlinearity becomes more obvious with increasing growth temperature. We assumed it was because of Ga diffusion through the GaN film, and developed a model which agrees well with the experimental results. These results raise questions concerning the role of Ga diffusion through the GaN film, which may affect the electrical and optical properties of the material. (C) 1998 Published by Elsevier Science B.V. All rights reserved.