946 resultados para Environment virtual


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Games and related virtual environments have been a much-hyped area of the entertainment industry. The classic quote is that games are now approaching the size of Hollywood box office sales [1]. Books are now appearing that talk up the influence of games on business [2], and it is one of the key drivers of present hardware development. Some of this 3D technology is now embedded right down at the operating system level via the Windows Presentation Foundations – hit Windows/Tab on your Vista box to find out... In addition to this continued growth in the area of games, there are a number of factors that impact its development in the business community. Firstly, the average age of gamers is approaching the mid thirties. Therefore, a number of people who are in management positions in large enterprises are experienced in using 3D entertainment environments. Secondly, due to the pressure of demand for more computational power in both CPU and Graphical Processing Units (GPUs), your average desktop, any decent laptop, can run a game or virtual environment. In fact, the demonstrations at the end of this paper were developed at the Queensland University of Technology (QUT) on a standard Software Operating Environment, with an Intel Dual Core CPU and basic Intel graphics option. What this means is that the potential exists for the easy uptake of such technology due to 1. a broad range of workers being regularly exposed to 3D virtual environment software via games; 2. present desktop computing power now strong enough to potentially roll out a virtual environment solution across an entire enterprise. We believe such visual simulation environments can have a great impact in the area of business process modeling. Accordingly, in this article we will outline the communication capabilities of such environments, giving fantastic possibilities for business process modeling applications, where enterprises need to create, manage, and improve their business processes, and then communicate their processes to stakeholders, both process and non-process cognizant. The article then concludes with a demonstration of the work we are doing in this area at QUT.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Business Process Modelling is a fast growing field in business and information technology, which uses visual grammars to model and execute the processes within an organisation. However, many analysts present such models in a 2D static and iconic manner that is difficult to understand by many stakeholders. Difficulties in understanding such grammars can impede the improvement of processes within an enterprise due to communication problems. In this chapter we present a novel framework for intuitively visualising animated business process models in interactive Virtual Environments. We also show that virtual environment visualisations can be performed with present 2D business process modelling technology, thus providing a low barrier to entry for business process practitioners. Two case studies are presented from film production and healthcare domains that illustrate the ease with which these visualisations can be created. This approach can be generalised to other executable workflow systems, for any application domain being modelled.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper reports on three primary school students’ explorations of 3D rotation in a virtual reality learning environment (VRLE) named VRMath. When asked to investigate if you would face the same direction when you turn right 45 degrees first then roll up 45 degrees, or when you roll up 45 degrees first then turn right 45 degrees, the students found that the different order of the two turns ended up with different directions in the VRLE. This was contrary to the students’ prior predictions based on using pen, paper and body movements. The findings of this study showed the difficulty young children have in perceiving and understanding the non-commutative nature of 3D rotation and the power of the computational VRLE in giving students experiences that they rarely have in real life with 3D manipulations and 3D mental movements.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Psychosis is a mental disorder that affects 1-2% of the population at some point in their lives. One of the main causes of psychosis is the mental illness schizophrenia. Sufferers of this illness often have terrifying symptoms such as hallucinations, delusions, and thought disorder. This project aims to develop a virtual environment to simulate the experience of psychosis, focusing on re-creating auditory and visual hallucinations. A model of a psychiatric ward was created and the psychosis simulation software was written to re-create the auditory and visual hallucinations of one particular patient. The patient was very impressed with the simulation, and commented that it effectively re-created the same emotions that she experienced on a day-to-day basis during her psychotic episodes. It is hoped that this work will result in a useful educational tool about schizophrenia, leading to improved training of clinicians, and fostering improved understanding and empathy toward sufferers of schizophrenia in the community, ultimately improving the quality of life and chances of recovery of patients.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Virtual Reality (VR) techniques are increasingly being used for education about and in the treatment of certain types of mental illness. Research indicates that VR is delivering on its promised potential to provide enhanced training and treatment outcomes through incorporation of this high-end technology. Schizophrenia is a mental disorder affecting 1-2% of the population, and it is estimated 12-16% of hospital beds in Australia are occupied by patients with psychosis. Tragically, there is also an increased risk of suicide associated with this diagnosis. A significant research project being undertaken across the University of Queensland faculties of Health Sciences and EPSA (Engineering, Physical Sciences and Architecture) has constructed a number of virtual environments that reproduce the phenomena experienced by patients who have psychosis. Symptoms of psychosis include delusions, hallucinations and thought disorder. The VR environment will allow behavioral, exposure therapies to be conducted with exactly controlled exposure stimuli and an expected reduction in risk of harm. This paper reports on the current work of the project, previous stages of software development and the final goal to introduce VR to medical consulting rooms.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper outlines a review carried out at Queensland University of Technology (QUT) in 2013 to identify the extent to which the centrally supported virtual learning environment met current and future learning and teaching needs. A range of consultation and investigation activities occurred from May to November to encourage open stakeholder feedback as well as to allow for reflection on alternative digital technologies, systems and strategies. This resulted in the development of nine recommendations, which, following a planning phase, will commence being implemented from mid-2014.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Asoftware-based environment was developed to provide practical training in medical radiation principles and safety. The Virtual Radiation Laboratory application allowed students to conduct virtual experiments using simulated diagnostic and radiotherapy X-ray generators. The experiments were designed to teach students about the inverse square law, half value layer and radiation protection measures and utilised genuine clinical and experimental data. Evaluation of the application was conducted in order to ascertain the impact of the software on students’ understanding, satisfaction and collaborative learning skills and also to determine potential further improvements to the software and guidelines for its continued use. Feedback was gathered via an anonymous online survey consisting of a mixture of Likert-style questions and short answer open questions. Student feedback was highly positive with 80 % of students reporting increased understanding of radiation protection principles. Furthermore 72 % enjoyed using the software and 87 %of students felt that the project facilitated collaboration within small groups. The main themes arising in the qualitative feedback comments related to efficiency and effectiveness of teaching, safety of environment, collaboration and realism. Staff and students both report gains in efficiency and effectiveness associated with the virtual experiments. In addition students particularly value the visualisation of ‘‘invisible’’ physical principles and increased opportunity for experimentation and collaborative problembased learning. Similar ventures will benefit from adopting an approach that allows for individual experimentation while visualizing challenging concepts.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of the study was to analyze and facilitate collaborative design in a virtual learning environment (VLE). Discussions of virtual design in design education have typically focused on technological or communication issues, not on pedagogical issues. Yet in order to facilitate collaborative design, it is also necessary to address the pedagogical issues related to the virtual design process. In this study, the progressive inquiry model of collaborative designing was used to give a structural level of facilitation to students working in the VLE. According to this model, all aspects of inquiry, such as creating the design context, constructing a design idea, evaluating the idea, and searching for new information, can be shared in a design community. The study consists of three design projects: 1) designing clothes for premature babies, 2) designing conference bags for an international conference, and 3) designing tactile books for visually impaired children. These design projects constituted a continuum of design experiments, each of which highlighted certain perspectives on collaborative designing. The design experiments were organized so that the participants worked in design teams, both face-to-face and virtually. The first design experiment focused on peer collaboration among textile teacher students in the VLE. The second design experiment took into consideration end-users needs by using a participatory design approach. The third design experiment intensified computer-supported collaboration between students and domain experts. The virtual learning environments, in these design experiments, were designed to support knowledge-building pedagogy and progressive inquiry learning. These environments enabled a detailed recording of all computer-mediated interactions and data related to virtual designing. The data analysis was based on qualitative content analysis of design statements in the VLE. This study indicated four crucial issues concerning collaborative design in the VLE in craft and design education. Firstly, using the collaborative design process in craft and design education gives rise to special challenges of building learning communities, creating appropriate design tasks for them, and providing tools for collaborative activities. Secondly, the progressive inquiry model of collaborative designing can be used as a scaffold support for design thinking and for reflection on the design process. Thirdly, participation and distributed expertise can be facilitated by considering the key stakeholders who are related to the design task or design context, and getting them to participate in virtual designing. Fourthly, in the collaborative design process, it is important that team members create and improve visual and technical ideas together, not just agree or disagree about proposed ideas. Therefore, viewing the VLE as a medium for collaborative construction of the design objects appears crucial in order to understand and facilitate the complex processes in collaborative designing.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Control of flow in duct networks has a myriad of applications ranging from heating, ventilation, and air-conditioning to blood flow networks. The system considered here provides vent velocity inputs to a novel 3-D wind display device called the TreadPort Active Wind Tunnel. An error-based robust decentralized sliding-mode control method with nominal feedforward terms is developed for individual ducts while considering cross coupling between ducts and model uncertainty as external disturbances in the output. This approach is important due to limited measurements, geometric complexities, and turbulent flow conditions. Methods for resolving challenges such as turbulence, electrical noise, valve actuator design, and sensor placement are presented. The efficacy of the controller and the importance of feedforward terms are demonstrated with simulations based upon an experimentally validated lumped parameter model and experiments on the physical system. Results show significant improvement over traditional control methods and validate prior assertions regarding the importance of decentralized control in practice.