874 resultados para Countably compact spaces


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hajnal and Juhasz proved that under CH there is a hereditarily separable, hereditarily normal topological group without non-trivial convergent sequences that is countably compact and not Lindelof. The example constructed is a topological subgroup H subset of 2(omega 1) that is an HFD with the following property (P) the projection of H onto every partial product 2(I) for I is an element of vertical bar omega(1)vertical bar(omega) is onto. Any such group has the necessary properties. We prove that if kappa is a cardinal of uncountable cofinality, then in the model obtained by forcing over a model of CH with the measure algebra on 2(kappa), there is an HFD topological group in 2(omega 1) which has property (P). Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Topics include: Semicontinuity, equicontinuity, absolute continuity, metric spaces, compact spaces, Ascoli’s theorem, Stone Weierstrass theorem, Borel and Lebesque measures, measurable functions, Lebesque integration, convergence theorems, Lp spaces, general measure and integration theory, Radon- Nikodyn theorem, Fubini theorem, Lebesque-Stieltjes integration, Semicontinuity, equicontinuity, absolute continuity, metric spaces, compact spaces, Ascoli’s theorem, Stone Weierstrass theorem, Borel and Lebesque measures, measurable functions, Lebesque integration, convergence theorems, Lp spaces, general measure and integration theory, Radon-Nikodyn theorem, Fubini theorem, Lebesque-Stieltjes integration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

For a polish space M and a Banach space E let B1 (M, E) be the space of first Baire class functions from M to E, endowed with the pointwise weak topology. We study the compact subsets of B1 (M, E) and show that the fundamental results proved by Rosenthal, Bourgain, Fremlin, Talagrand and Godefroy, in case E = R, also hold true in the general case. For instance: a subset of B1 (M, E) is compact iff it is sequentially (resp. countably) compact, the convex hull of a compact bounded subset of B1 (M, E) is relatively compact, etc. We also show that our class includes Gulko compact. In the second part of the paper we examine under which conditions a bounded linear operator T : X ∗ → Y so that T |BX ∗ : (BX ∗ , w∗ ) → Y is a Baire-1 function, is a pointwise limit of a sequence (Tn ) of operators with T |BX ∗ : (BX ∗ , w∗ ) → (Y, · ) continuous for all n ∈ N. Our results in this case are connected with classical results of Choquet, Odell and Rosenthal.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 54C10, 54D15, 54G12.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper is a continuation and a complement of our previous work on isomorphic classification of some spaces of compact operators. We improve the main result concerning extensions of the classical isomorphic classification of the Banach spaces of continuous functions on ordinals. As an application, fixing an ordinal a and denoting by X(xi), omega(alpha) <= xi < omega(alpha+1), the Banach space of all X-valued continuous functions defined in the interval of ordinals [0,xi] and equipped with the supremum, we provide complete isomorphic classifications of some Banach spaces K(X(xi),Y(eta)) of compact operators from X(xi) to Y(eta), eta >= omega. It is relatively consistent with ZFC (Zermelo-Fraenkel set theory with the axiom of choice) that these results include the following cases: 1.X* contains no copy of c(0) and has the Mazur property, and Y = c(0)(J) for every set J. 2. X = c(0)(I) and Y = l(q)(J) for any infinite sets I and J and 1 <= q < infinity. 3. X = l(p)(I) and Y = l(q)(J) for any infinite sets I and J and 1 <= q < p < infinity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We prove an extension of the classical isomorphic classification of Banach spaces of continuous functions on ordinals. As a consequence, we give complete isomorphic classifications of some Banach spaces K(X,Y(n)), eta >= omega, of compact operators from X to Y(eta), the space of all continuous Y-valued functions defined in the interval of ordinals [1, eta] and equipped with the supremum norm. In particular, under the Continuum Hypothesis, we extend a recent result of C. Samuel by classifying, up to isomorphism, the spaces K(X(xi), c(0)(Gamma)(eta)), where omega <= xi < omega(1,) eta >= omega, Gamma is a countable set, X contains no complemented copy of l(1), X* has the Mazur property and the density character of X** is less than or equal to N(1).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper concerns the spaces of compact operators kappa(E,F), where E and F are Banach spaces C([1, xi], X) of all continuous X-valued functions defined on the interval of ordinals [1, xi] and equipped with the supremun norm. We provide sufficient conditions on X, Y, alpha, beta, xi and eta, with omega <= alpha <= beta < omega 1 for the following equivalence: (a) kappa(C([1, xi], X), C([1, alpha], Y)) is isomorphic to kappa(C([1,eta], X), C([1, beta], Y)), (b) beta < alpha(omega). In this way, we unify and extend results due to Bessaga and Pelczynski (1960) and C. Samuel (2009). Our result covers the case of the classical spaces X = l(p) and Y = l(q) with 1 < p, q < infinity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We study polar actions with horizontal sections on the total space of certain principal bundles G/K -> G/H with base a symmetric space of compact type. We classify such actions up to orbit equivalence in many cases. In particular, we exhibit examples of hyperpolar actions with cohomogeneity greater than one on locally irreducible homogeneous spaces with nonnegative curvature which are not homeomorphic to symmetric spaces.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we prove that if a Banach space X contains some uniformly convex subspace in certain geometric position, then the C(K, X) spaces of all X-valued continuous functions defined on the compact metric spaces K have exactly the same isomorphism classes that the C(K) spaces. This provides a vector-valued extension of classical results of Bessaga and Pelczynski (1960) [2] and Milutin (1966) [13] on the isomorphic classification of the separable C(K) spaces. As a consequence, we show that if 1 < p < q < infinity then for every infinite countable compact metric spaces K(1), K(2), K(3) and K(4) are equivalent: (a) C(K(1), l(p)) circle plus C(K(2), l(q)) is isomorphic to C(K(3), l(p)) circle plus (K(4), l(q)). (b) C(K(1)) is isomorphic to C(K(3)) and C(K(2)) is isomorphic to C(K(4)). (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We study Hardy spaces on the boundary of a smooth open subset or R-n and prove that they can be defined either through the intrinsic maximal function or through Poisson integrals, yielding identical spaces. This extends to any smooth open subset of R-n results already known for the unit ball. As an application, a characterization of the weak boundary values of functions that belong to holomorphic Hardy spaces is given, which implies an F. and M. Riesz type theorem. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Let E be an infinite dimensional separable space and for e ∈ E and X a nonempty compact convex subset of E, let qX(e) be the metric antiprojection of e on X. Let n ≥ 2 be an arbitrary integer. It is shown that for a typical (in the sence of the Baire category) compact convex set X ⊂ E the metric antiprojection qX(e) has cardinality at least n for every e in a dense subset of E.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary 46E15, 54C55; Secondary 28B20.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary 43A22, 43A25.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

There are two main aims of the paper. The first one is to extend the criterion for the precompactness of sets in Banach function spaces to the setting of quasi-Banach function spaces. The second one is to extend the criterion for the precompactness of sets in the Lebesgue spaces $L_p(\Rn)$, $1 \leq p < \infty$, to the so-called power quasi-Banach function spaces. These criteria are applied to establish compact embeddings of abstract Besov spaces into quasi-Banach function spaces. The results are illustrated on embeddings of Besov spaces $B^s_{p,q}(\Rn)$, $0spaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Some results are obtained for non-compact cases in topological vector spaces for the existence problem of solutions for some set-valued variational inequalities with quasi-monotone and lower hemi-continuous operators, and with quasi-semi-monotone and upper hemi-continuous operators. Some applications are given in non-reflexive Banach spaces for these existence problems of solutions and for perturbation problems for these set-valued variational inequalities with quasi-monotone and quasi-semi-monotone operators.