93 resultados para BOUNDEDNESS
Resumo:
Recently two new types of completeness in metric spaces, called Bourbaki-completeness and cofinal Bourbaki-completeness, have been introduced in [7]. The purpose of this note is to analyze these completeness properties in the general context of uniform spaces. More precisely, we are interested in how they are related with uniform paracompactness properties, as well as with some kind of uniform boundedness.
Resumo:
Emrouznejad et al. (2010) proposed a Semi-Oriented Radial Measure (SORM) model for assessing the efficiency of Decision Making Units (DMUs) by Data Envelopment Analysis (DEA) with negative data. This paper provides a necessary and sufficient condition for boundedness of the input and output oriented SORM models.
Resumo:
Reset/inhibitor nets are Petri nets extended with reset arcs and inhibitor arcs. These extensions can be used to model cancellation and blocking. A reset arc allows a transition to remove all tokens from a certain place when the transition fires. An inhibitor arc can stop a transition from being enabled if the place contains one or more tokens. While reset/inhibitor nets increase the expressive power of Petri nets, they also result in increased complexity of analysis techniques. One way of speeding up Petri net analysis is to apply reduction rules. Unfortunately, many of the rules defined for classical Petri nets do not hold in the presence of reset and/or inhibitor arcs. Moreover, new rules can be added. This is the first paper systematically presenting a comprehensive set of reduction rules for reset/inhibitor nets. These rules are liveness and boundedness preserving and are able to dramatically reduce models and their state spaces. It can be observed that most of the modeling languages used in practice have features related to cancellation and blocking. Therefore, this work is highly relevant for all kinds of application areas where analysis is currently intractable.
Resumo:
A composition operator is a linear operator between spaces of analytic or harmonic functions on the unit disk, which precomposes a function with a fixed self-map of the disk. A fundamental problem is to relate properties of a composition operator to the function-theoretic properties of the self-map. During the recent decades these operators have been very actively studied in connection with various function spaces. The study of composition operators lies in the intersection of two central fields of mathematical analysis; function theory and operator theory. This thesis consists of four research articles and an overview. In the first three articles the weak compactness of composition operators is studied on certain vector-valued function spaces. A vector-valued function takes its values in some complex Banach space. In the first and third article sufficient conditions are given for a composition operator to be weakly compact on different versions of vector-valued BMOA spaces. In the second article characterizations are given for the weak compactness of a composition operator on harmonic Hardy spaces and spaces of Cauchy transforms, provided the functions take values in a reflexive Banach space. Composition operators are also considered on certain weak versions of the above function spaces. In addition, the relationship of different vector-valued function spaces is analyzed. In the fourth article weighted composition operators are studied on the scalar-valued BMOA space and its subspace VMOA. A weighted composition operator is obtained by first applying a composition operator and then a pointwise multiplier. A complete characterization is given for the boundedness and compactness of a weighted composition operator on BMOA and VMOA. Moreover, the essential norm of a weighted composition operator on VMOA is estimated. These results generalize many previously known results about composition operators and pointwise multipliers on these spaces.
Resumo:
An interactive graphics package for modeling with Petri Nets has been implemented. It uses the VT-11 graphics terminal supported on the PDP-11/35 computer to draw, execute, analyze, edit and redraw a Petri Net. Each of the above mentioned tasks can be performed by selecting appropriate items from a menu displayed on the screen. Petri Nets with a reasonably large number of nodes can be created and analyzed using this package. The number of nodes supported may be increased by making simple changes in the program. Being interactive, the program seeks information from the user after displaying appropriate messages on the terminal. After completing the Petri Net, it may be executed step by step and the changes in the number of tokens may be observed on the screen, at each place. Some properties of Petri Nets like safety, boundedness, conservation and redundancy can be checked using this package. This package can be used very effectively for modeling asynchronous (concurrent) systems with Petri Nets and simulating the model by “graphical execution.”
Resumo:
Combining the advanced techniques of optimal dynamic inversion and model-following neuro-adaptive control design, an innovative technique is presented to design an automatic drug administration strategy for effective treatment of chronic myelogenous leukemia (CML). A recently developed nonlinear mathematical model for cell dynamics is used to design the controller (medication dosage). First, a nominal controller is designed based on the principle of optimal dynamic inversion. This controller can treat the nominal model patients (patients who can be described by the mathematical model used here with the nominal parameter values) effectively. However, since the system parameters for a realistic model patient can be different from that of the nominal model patients, simulation studies for such patients indicate that the nominal controller is either inefficient or, worse, ineffective; i.e. the trajectory of the number of cancer cells either shows non-satisfactory transient behavior or it grows in an unstable manner. Hence, to make the drug dosage history more realistic and patient-specific, a model-following neuro-adaptive controller is augmented to the nominal controller. In this adaptive approach, a neural network trained online facilitates a new adaptive controller. The training process of the neural network is based on Lyapunov stability theory, which guarantees both stability of the cancer cell dynamics as well as boundedness of the network weights. From simulation studies, this adaptive control design approach is found to be very effective to treat the CML disease for realistic patients. Sufficient generality is retained in the mathematical developments so that the technique can be applied to other similar nonlinear control design problems as well.
Resumo:
In this paper, new results and insights are derived for the performance of multiple-input, single-output systems with beamforming at the transmitter, when the channel state information is quantized and sent to the transmitter over a noisy feedback channel. It is assumed that there exists a per-antenna power constraint at the transmitter, hence, the equal gain transmission (EGT) beamforming vector is quantized and sent from the receiver to the transmitter. The loss in received signal-to-noise ratio (SNR) relative to perfect beamforming is analytically characterized, and it is shown that at high rates, the overall distortion can be expressed as the sum of the quantization-induced distortion and the channel error-induced distortion, and that the asymptotic performance depends on the error-rate behavior of the noisy feedback channel as the number of codepoints gets large. The optimum density of codepoints (also known as the point density) that minimizes the overall distortion subject to a boundedness constraint is shown to be the same as the point density for a noiseless feedback channel, i.e., the uniform density. The binary symmetric channel with random index assignment is a special case of the analysis, and it is shown that as the number of quantized bits gets large the distortion approaches the same as that obtained with random beamforming. The accuracy of the theoretical expressions obtained are verified through Monte Carlo simulations.
Resumo:
An approximate dynamic programming (ADP) based neurocontroller is developed for a heat transfer application. Heat transfer problem for a fin in a car's electronic module is modeled as a nonlinear distributed parameter (infinite-dimensional) system by taking into account heat loss and generation due to conduction, convection and radiation. A low-order, finite-dimensional lumped parameter model for this problem is obtained by using Galerkin projection and basis functions designed through the 'Proper Orthogonal Decomposition' technique (POD) and the 'snap-shot' solutions. A suboptimal neurocontroller is obtained with a single-network-adaptive-critic (SNAC). Further contribution of this paper is to develop an online robust controller to account for unmodeled dynamics and parametric uncertainties. A weight update rule is presented that guarantees boundedness of the weights and eliminates the need for persistence of excitation (PE) condition to be satisfied. Since, the ADP and neural network based controllers are of fairly general structure, they appear to have the potential to be controller synthesis tools for nonlinear distributed parameter systems especially where it is difficult to obtain an accurate model.
Resumo:
Some theorems derived recently by the authors on the stability of multidimensional linear time varying systems are reported in this paper. To begin with, criteria based on Liapunov�s direct method are stated. These are followed by conditions on the asymptotic behaviour and boundedness of solutions. Finally,L 2 andL ? stabilities of these systems are discussed. In conclusion, mention is made of some of the problems in aerospace engineering to which these theorems have been applied.
Resumo:
Toeplitz operators are among the most important classes of concrete operators with applications to several branches of pure and applied mathematics. This doctoral thesis deals with Toeplitz operators on analytic Bergman, Bloch and Fock spaces. Usually, a Toeplitz operator is a composition of multiplication by a function and a suitable projection. The present work deals with generalizing the notion to the case where the function is replaced by a distributional symbol. Fredholm theory for Toeplitz operators with matrix-valued symbols is also considered. The subject of this thesis belongs to the areas of complex analysis, functional analysis and operator theory. This work contains five research articles. The articles one, three and four deal with finding suitable distributional classes in Bergman, Fock and Bloch spaces, respectively. In each case the symbol class to be considered turns out to be a certain weighted Sobolev-type space of distributions. The Bergman space setting is the most straightforward. When dealing with Fock spaces, some difficulties arise due to unboundedness of the complex plane and the properties of the Gaussian measure in the definition. In the Bloch-type spaces an additional logarithmic weight must be introduced. Sufficient conditions for boundedness and compactness are derived. The article two contains a portion showing that under additional assumptions, the condition for Bergman spaces is also necessary. The fifth article deals with Fredholm theory for Toeplitz operators having matrix-valued symbols. The essential spectra and index theorems are obtained with the help of Hardy space factorization and the Berezin transform, for instance. The article two also has a part dealing with matrix-valued symbols in a non-reflexive Bergman space, in which case a condition on the oscillation of the symbol (a logarithmic VMO-condition) must be added.
Resumo:
Various Tb theorems play a key role in the modern harmonic analysis. They provide characterizations for the boundedness of Calderón-Zygmund type singular integral operators. The general philosophy is that to conclude the boundedness of an operator T on some function space, one needs only to test it on some suitable function b. The main object of this dissertation is to prove very general Tb theorems. The dissertation consists of four research articles and an introductory part. The framework is general with respect to the domain (a metric space), the measure (an upper doubling measure) and the range (a UMD Banach space). Moreover, the used testing conditions are weak. In the first article a (global) Tb theorem on non-homogeneous metric spaces is proved. One of the main technical components is the construction of a randomization procedure for the metric dyadic cubes. The difficulty lies in the fact that metric spaces do not, in general, have a translation group. Also, the measures considered are more general than in the existing literature. This generality is genuinely important for some applications, including the result of Volberg and Wick concerning the characterization of measures for which the analytic Besov-Sobolev space embeds continuously into the space of square integrable functions. In the second article a vector-valued extension of the main result of the first article is considered. This theorem is a new contribution to the vector-valued literature, since previously such general domains and measures were not allowed. The third article deals with local Tb theorems both in the homogeneous and non-homogeneous situations. A modified version of the general non-homogeneous proof technique of Nazarov, Treil and Volberg is extended to cover the case of upper doubling measures. This technique is also used in the homogeneous setting to prove local Tb theorems with weak testing conditions introduced by Auscher, Hofmann, Muscalu, Tao and Thiele. This gives a completely new and direct proof of such results utilizing the full force of non-homogeneous analysis. The final article has to do with sharp weighted theory for maximal truncations of Calderón-Zygmund operators. This includes a reduction to certain Sawyer-type testing conditions, which are in the spirit of Tb theorems and thus of the dissertation. The article extends the sharp bounds previously known only for untruncated operators, and also proves sharp weak type results, which are new even for untruncated operators. New techniques are introduced to overcome the difficulties introduced by the non-linearity of maximal truncations.
Resumo:
This thesis is concerned with the area of vector-valued Harmonic Analysis, where the central theme is to determine how results from classical Harmonic Analysis generalize to functions with values in an infinite dimensional Banach space. The work consists of three articles and an introduction. The first article studies the Rademacher maximal function that was originally defined by T. Hytönen, A. McIntosh and P. Portal in 2008 in order to prove a vector-valued version of Carleson's embedding theorem. The boundedness of the corresponding maximal operator on Lebesgue-(Bochner) -spaces defines the RMF-property of the range space. It is shown that the RMF-property is equivalent to a weak type inequality, which does not depend for instance on the integrability exponent, hence providing more flexibility for the RMF-property. The second article, which is written in collaboration with T. Hytönen, studies a vector-valued Carleson's embedding theorem with respect to filtrations. An earlier proof of the dyadic version assumed that the range space satisfies a certain geometric type condition, which this article shows to be also necessary. The third article deals with a vector-valued generalizations of tent spaces, originally defined by R. R. Coifman, Y. Meyer and E. M. Stein in the 80's, and concerns especially the ones related to square functions. A natural assumption on the range space is then the UMD-property. The main result is an atomic decomposition for tent spaces with integrability exponent one. In order to suit the stochastic integrals appearing in the vector-valued formulation, the proof is based on a geometric lemma for cones and differs essentially from the classical proof. Vector-valued tent spaces have also found applications in functional calculi for bisectorial operators. In the introduction these three themes come together when studying paraproduct operators for vector-valued functions. The Rademacher maximal function and Carleson's embedding theorem were applied already by Hytönen, McIntosh and Portal in order to prove boundedness for the dyadic paraproduct operator on Lebesgue-Bochner -spaces assuming that the range space satisfies both UMD- and RMF-properties. Whether UMD implies RMF is thus an interesting question. Tent spaces, on the other hand, provide a method to study continuous time paraproduct operators, although the RMF-property is not yet understood in the framework of tent spaces.
Resumo:
An approximate dynamic programming (ADP)-based suboptimal neurocontroller to obtain desired temperature for a high-speed aerospace vehicle is synthesized in this paper. A I-D distributed parameter model of a fin is developed from basic thermal physics principles. "Snapshot" solutions of the dynamics are generated with a simple dynamic inversion-based feedback controller. Empirical basis functions are designed using the "proper orthogonal decomposition" (POD) technique and the snapshot solutions. A low-order nonlinear lumped parameter system to characterize the infinite dimensional system is obtained by carrying out a Galerkin projection. An ADP-based neurocontroller with a dual heuristic programming (DHP) formulation is obtained with a single-network-adaptive-critic (SNAC) controller for this approximate nonlinear model. Actual control in the original domain is calculated with the same POD basis functions through a reverse mapping. Further contribution of this paper includes development of an online robust neurocontroller to account for unmodeled dynamics and parametric uncertainties inherent in such a complex dynamic system. A neural network (NN) weight update rule that guarantees boundedness of the weights and relaxes the need for persistence of excitation (PE) condition is presented. Simulation studies show that in a fairly extensive but compact domain, any desired temperature profile can be achieved starting from any initial temperature profile. Therefore, the ADP and NN-based controllers appear to have the potential to become controller synthesis tools for nonlinear distributed parameter systems.
Resumo:
We study the boundedness of Toeplitz operators on Segal-Bargmann spaces in various contexts. Using Gutzmer's formula as the main tool we identify symbols for which the Toeplitz operators correspond to Fourier multipliers on the underlying groups. The spaces considered include Fock spaces, Hermite and twisted Bergman spaces and Segal-Bargmann spaces associated to Riemannian symmetric spaces of compact type.
Resumo:
The problem addressed is one of model reference adaptive control (MRAC) of asymptotically stable plants of unknown order with zeros located anywhere in the s-plane except at the origin. The reference model is also asymptotically stable and lacking zero(s) at s = 0. The control law is to be specified only in terms of the inputs to and outputs of the plant and the reference model. For inputs from a class of functions that approach a non-zero constant, the problem is formulated in an optimal control framework. By successive refinements of the sub-optimal laws proposed here, two schemes are finally design-ed. These schemes are characterized by boundedness, convergence and optimality. Simplicity and total time-domain implementation are the additional striking features. Simulations to demonstrate the efficacy of the control schemes are presented.