894 resultados para Stable And Unstable Manifolds
Resumo:
Layer-by-layer electrodeposition of redox polymer/enzyme composition films on screen-printed carbon electrodes for fabrication of reagentless enzyme biosensors has been proposed and the resulting films were found to be very stable and rigid.
Resumo:
Didodecyldimethylammonium bromide (DDAB) lipid bilayer-protected gold nanoparticles (AuNPs), which were stable and hydrophilic, were synthesized by in situ reduction of HAuCl4 with NaBH4 in an aqueous medium in the presence of DDAB. As-prepared nanoparticles were characterized by UV-vis spectra, transmission electron microscopy, dynamic light scattering analysis, and X-ray photoelectron spectroscopy. All these data supported the formation of AuNPs. Fourier transform infrared spectroscopy (FTIR) and differential thermal analysis/thermogravimetric analysis data revealed that DDAB existed in a bilayer structure formed on the particle surface, resulting in a positively charged particle surface. The FTIR spectra also indicated that the DDAB bilayer coated on the surface of AuNPs was probably in the ordered gel phase with some end-gauche defects. On the basis of electrostatic interactions between such AuNPs and anionic polyelectrolyte poly(sodium 4-styrenesulfonate) (PSS), we successfully fabricated (PSS/AuNP)(n) multilayers on a cationic polyelectrolyte poly(ethylenimine) coated indium tin oxide substrate via the layer-by-layer self-assembly technique and characterized as-formed multilayers with UV-vis spectra and atomic force microscopy.
Resumo:
Poly(diallyl dimethylammonium) chloride (PDDA), an ordinary and watersoluble, cationic polyelectrolyte, was investigated for its ability to generate and stabilize gold colloids from a chloroauric acid precursor. In this reaction, PDDA acted as both reducing and stabilizing agents for gold nanoparticles (AuNPs). More importantly, PDDA is a quaternary ammonium polyelectrolyte, which shows that the scope of the reducing and stabilizing agents for metal nanoparticles can be extended from the amine-containing molecules to quaternary ammonium polyelectrolytes or salts. UV-vis spectroscopy, transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS) and Fourier transform infrared (FTIR) were used to characterize the synthetic AuNPs. The PDDA-protected AuNPs obtained are very stable and have relative narrow size distribution.
Resumo:
Prussian blue (PB) was modified onto surface of SiO2 nanoparticles and multiwall carbon nanotubes (MWNTs) by electrostatic assembled method. SiO2 nanoparticles and MWNTs firstly modified by polyelectrolyte exhibited positive charges and negative charged PB could be assembled onto them. UV-vs spectroscopy, Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), field-emitted scanning electron microscopy (FE-SEM) and electrochemical methods were used to characterize these composite nanomaterials. TEM and FE-SEM images showed that PB was easily assembled onto polyelectrolyte modified SiO2 nanoparticles and MWNTs. Moreover, PB on the surface of nanomaterials was stable and still kept its intrinsic electrochemical properties and high electrocatalytic activity towards hydrogen peroxide.
Resumo:
A poly(thionine) modified screen-printed carbon electrode has been prepared by an electrooxidative polymerization of thionine in neutral phosphate buffer. The modified electrodes are found to give stable and reproducible electrocatlytic responses to NADH and exhibit good stability. Several techniques, including cyclic voltammetry, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), have been employed to characterize the poly(thionine) film. Further, the modified screen-printed carbon electrode was found to be promising as an amperometric detector for the flow injection analysis (FIA) of NADH, typically with a dynamic range of 5-100 muM.
Resumo:
Multiple melting behavior was observed in the differential scanning calorimetry (DSC) scans for the isothermally crystallized poly(iminosebacoyl iminodecamethylene) (PA1010) samples. Coexistence of crystal populations with different lamellar thickness in PA1010 was discussed by means of DSC, wide-angle X-ray diffraction (WAXD), and small-angle X-ray scattering techniques. During crystallization of the polymer, a major lamellar crystal population developed first, which possessed a higher melting temperature. However, a small fraction of the polymer formed minor crystal population with thinner lamellae, which was metastable and, upon post-annealing, could grow into more stable and thicker lamellae through melting and recrystallization process. Lamellae insertion or stacks would develop during the post-annealing at a lower temperature for the isothermally crystallized samples; thus, multiple crystal populations with different thickness could be produced. It is the multiple distribution of lamella thickness that gives rise to multiple melting behavior of crystalline polymers. (C) 2000 John Wiley & Sons, Inc.
Resumo:
Valence stability and change of Eu(II) in oxides have been studied by luminescence spect a. The results show that the valence stability and change of Eu(II)in oxides is closely related to the radius and electric charge of positive ions substituted by Eu(II) and crystal structure of the host such as Al2O3 which can form alpha-Al2O3 single phase and alpha-Al2O3 and gamma-Al2O3 mixed phases under different reaction temperatures. A, fairly good explanation is made by the proposed relation between energy coefficient and crystal structure for the first time to the observed experiment results. if the energy coefficients of substitution ions is more than that of Eu(II), the lattice substitution of Eu(II)for these ions is not occured generally and valence stare of Eu(II)is not stable and be easily changed into Eu(III). The lattice of gamma-Al2O3 can stablize the valence state of Eu(II)within certain coped concentration and in alpha-Al2O3 crystal lattice Eu(II)can be easily changed into Eu(III).
Resumo:
Capillary electrophoresis (CE)/electrochemical detection (EC) for the simultaneous detection of hydrazine, methylhydrazine, and isoniazid has been developed with a 4-pyridyl hydroquinone self-assembled microdisk platinum electrode. Such an electrode has very high catalytic ability for hydrazines and they could be detected even at 0.0 V. The responses for hydrazine, methylhydrazine, and isoniazid are linear over 3 orders of detected concentration and of magnitude of 0.2-400 mu M, 0.2-400 mu M, 0.5 mu M-2 mM, with correlation coefficients of 0.9998, 0.9991, and 0.9982, respectively. And they could be detected to levels of 0.1, 0.1 and 0.2 mu M, respectively. This modified electrode was found to be very stable and reproducible when continuously used as detector for capillary electrophoresis for period of at least 4 weeks with no apparent loss of response. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
A simple set of electric circuits was used to assemble a pulse generator. With pulse potentials and under galvanostatical control, a clean silver wire was anodized electrochemically for 0.2-0.5 min in 1.0 moll(-1) HCl with a pulse current density of 20 mA cm(-2), and the pulse wave parameters of t(a)/t(c) = 1 and a cycle of 4 s forming an Ag/AgCl reference electrode. Even though the AgCl layer was consumed during the working period when the Ag/AgCl electrode was used as a cathode, the AgCl layer could be in situ recovered electrochemically in serum used when a reversed potential was applied to the electrode system immediately after the measuring program was finished. The current response curve of the anode indicated that an AgCl layer in high density was basically accomplished during the first 6 pulse cycles in human serum. In order to keep a stable and uniform AgCl layer on the reference electrode after each measuring cycle, the ratio of the recovery time (t(r)) to the working time (t(w)) was measured and the smallest value was obtained at 0.03. The open-circuit potential of the Ag/AgCl electrode with respect to a SCE in 0.1 moll(-1) KCl was monitored over a period of 14 days and the mean value was 40.09 mV vs SCE with a standard deviation of 2.55 mV. The potential of the Ag/AgCl reference electrode did remain constant when the measurements were repeated more than 600 times in undiluted human serum with a standard deviation of 1.89 mV. This study indicated that the Ag/AgCl reference electrode could been rapidly fabricated with a pulse potential and could be used as a reference electrode with long-term stable properties in human serum samples.
Resumo:
Endohedral metallofullerene Gd@C-2n were synthesized with high-yield using the carbon-arc discharge method of activating the Gd2O3-containing graphite anode in situ and back-burning technique. A series of Gd@C-2n for 2n from 70 to 96 were effectively extracted by toluene at high-temperature and under high-pressure condition. Gd@C-82, Gd@C-74 were considered to be fairly stable and soluble metallofullerene species.
Resumo:
In this paper the preparation of isopoly- and heteropolyoxometallates (IPA and HPA) thin film modified carbon fiber (CF) microelectrodes and the factor that influences the modification of IPA and HPA films are described. IPA and HPA film modified CF microelectrodes can all be prepared by cyclic potential scan and simple dip coating. The modified electrodes prepared are very stable and reversible in acidic solution with monolayer characteristics. The electrochemical pretreatment of CF microelectrodes plays an important role in the modification of IPA and HPA film. The absorption of IPA and HPA film on electrode surfaces has been discussed on the basis of surface conditions of the CF microelectrode and the structure of IPA and HPA.
Resumo:
A gene, pfa1, encoding an autotransporter was cloned from a pathogenic Pseudomonas fluorescens strain, TSS, isolated from diseased fish. The expression of pfa1 is enhanced during infection and is regulated by growth phase and growth conditions. Mutation of pfa1 significantly attenuates the overall bacterial virulence of TSS and impairs the abilities of TSS in biofilm production, interaction with host cells, modulation of host immune responses, and dissemination in host blood. The putative protein encoded by pfa1 is 1,242 amino acids in length and characterized by the presence of three functional domains that are typical for autotransporters. The passenger domain of PfaI contains a putative serine protease (Pap) that exhibits apparent proteolytic activity when expressed in and purified from Escherichia coli as a recombinant protein. Consistent with the important role played by PfaI in bacterial virulence, purified recombinant Pap has a profound cytotoxic effect on cultured fish cells. Enzymatic analysis showed that recombinant Pap is relatively heat stable and has an optimal temperature and pH of 50 degrees C and pH 8.0. The domains of PfaI that are essential to autotransporting activity were localized, and on the basis of this, a PfaI-based autodisplay system (named AT1) was engineered to facilitate the insertion and transport of heterologous proteins. When expressed in E. coli, AT1 was able to deliver an integrated Edwardsiella tarda immunogen (Et18) onto the surface of bacterial cells. Compared to purified recombinant Et18, Et18 displayed by E. coli via AT1 induced significantly enhanced immunoprotection.
Resumo:
The proton-translocating NADH:ubiquinone oxidoreductase (complex I) has been purified from Aquifex aeolicus, a hyperthermophilic eubacterium of known genome sequence. The purified detergent solubilized enzyme is highly active above 50 degreesC. The specific activity for electron transfer from NADH to decylubiquinone is 29 U/mg at 80 degreesC. The A. aeolicus complex I is completely sensitive to rotenone and 2-n-decyl-quinazoline-4-yl-amine. SDS polyacrylamide gel electrophoresis shows that it may contain up to 14 subunits. N-terminal amino acid sequencing of the bands indicates the presence of a stable subcomplex, which is composed of subunits E, F, and G. The isolated complex is highly stable and active in a temperature range from 50 to 90 degreesC, with a half-life of about 10 h at 80 degreesC. The activity shows a linear Arrhenius plot at 50-85 degreesC with an activation energy at 31.92 J/mol K. Single particle electron microscopy shows that the A. aeolicus complex I has the typical L-shape. However, visual inspection of averaged images reveals many more details in the external arm of the complex than has been observed for complex I from other sources. In addition, the angle (90degrees) between the cytoplasmic peripheral arm and the membrane intrinsic arm of the complex appears to be invariant.
Resumo:
Twenty-seven Porphyra lines from 5 classes, including lines widely used in China, wild lines, and lines introduced to China from abroad in recent years, were screened by means of amplified fragment length polymorphism (AFLP) with 24 primer pairs. From the generated AFLP products, 13 bands that showed stable and repeatable AFLP patterns amplified by primer pairs M-CGA/E-AA and M-CGA/E-TA were scored and used to develop the DNA fingerprints of the 27 Porphyra lines. Moreover, the DNA fingerprinting patterns were converted into computer language expressed with digitals 1 and 0, which represented the presence (numbered as 1) or absence (numbered as 0) of the corresponding band. On the basis of these results, computerized AFLP DNA fingerprints were constructed in which each of the 27 Porphyra lines has its unique AFLP,fingerprinting pattern and can be easily distinguished from others. Software called PGI-AFLP (Porphyra germplasm identification-AFLP) was designed for identification of the 27 Porphyra lines. In addition, 21 specific AFLP markers from 15 Porphyra lines were identified; 6 AFLP markers from 4 Porphyra lines were sequenced, and 2 of them were successfully converted into SCAR (sequence characterized amplification region) markers. The developed AFLP DNA fingerprinting and specific molecular markers provide useful ways for the identification, classification, and resource protection of the Porphyra lines.
Resumo:
Twenty-seven Porphyra lines, including lines widely used in China, wild lines and lines introduced to China from abroad in recent years, were screened by random amplified polymorphic DNA (RAPD) technique with 120 operon primers. From the generated RAPD products, 11 bands that showed stable and repeatable RAPD patterns amplified by OPC-04, OPJ-18 and OPX-06, respectively were scored and used to develop the DNA fingerprints of the 27 Porphyra lines. Moreover, the DNA fingerprinting patterns were converted into computer language expressed with two digitals, 1 and 0, which represented the presence (numbered as 1) or absence (numbered as 0) of the corresponding band, respectively. Based on the above results, computerized DNA fingerprints were constructed in which each of the 27 Porphyra lines has its unique fingerprinting pattern and can be easily distinguished from others. Software named PGI (Porphyra germplasm identification) was designed for identification of the 27 Porphyra lines. In addition, seven specific RAPD markers from seven Porphyra lines were identified and two of them were successfully converted into SCAR (sequence characterized amplification region) markers. The developed DNA fingerprinting and specific molecular markers provide useful ways for the identification, classification and resource protection of the Porphyra lines.