Rossby waves and two-dimensional turbulence in a large-scale zonal jet


Autoria(s): Shepherd, Theodore G.
Data(s)

1987

Resumo

The theory of homogeneous barotropic beta-plane turbulence is here extended to include effects arising from spatial inhomogeneity in the form of a zonal shear flow. Attention is restricted to the geophysically important case of zonal flows that are barotropically stable and are of larger scale than the resulting transient eddy field. Because of the presumed scale separation, the disturbance enstrophy is approximately conserved in a fully nonlinear sense, and the (nonlinear) wave-mean-flow interaction may be characterized as a shear-induced spectral transfer of disturbance enstrophy along lines of constant zonal wavenumber k. In this transfer the disturbance energy is generally not conserved. The nonlinear interactions between different disturbance components are turbulent for scales smaller than the inverse of Rhines's cascade-arrest scale κβ[identical with] (β0/2urms)½ and in this regime their leading-order effect may be characterized as a tendency to spread the enstrophy (and energy) along contours of constant total wavenumber κ [identical with] (k2 + l2)½. Insofar as this process of turbulent isotropization involves spectral transfer of disturbance enstrophy across lines of constant zonal wavenumber k, it can be readily distinguished from the shear-induced transfer which proceeds along them. However, an analysis in terms of total wavenumber K alone, which would be justified if the flow were homogeneous, would tend to mask the differences. The foregoing theoretical ideas are tested by performing direct numerical simulation experiments. It is found that the picture of classical beta-plane turbulence is altered, through the effect of the large-scale zonal flow, in the following ways: (i) while the turbulence is still confined to K Kβ, the disturbance field penetrates to the largest scales of motion; (ii) the larger disturbance scales K < Kβ exhibit a tendency to meridional rather than zonal anisotropy, namely towards v2 > u2 rather than vice versa; (iii) the initial spectral transfer rate away from an isotropic intermediate-scale source is significantly enhanced by the shear-induced transfer associated with straining by the zonal flow. This last effect occurs even when the large-scale shear appears weak to the energy-containing eddies, in the sense that dU/dy [double less-than sign] κ for typical eddy length and velocity scales.

Formato

text

Identificador

http://centaur.reading.ac.uk/32992/1/Shepherd2DT1987JFM.pdf

Shepherd, T. G. <http://centaur.reading.ac.uk/view/creators/90004685.html> (1987) Rossby waves and two-dimensional turbulence in a large-scale zonal jet. Journal of Fluid Mechanics, 183 (1). pp. 467-509. ISSN 0022-1120 doi: 10.1017/S0022112087002738 <http://dx.doi.org/10.1017/S0022112087002738>

Idioma(s)

en

Publicador

Cambridge University Press

Relação

http://centaur.reading.ac.uk/32992/

creatorInternal Shepherd, Theodore G.

http://dx.doi.org/10.1017/S0022112087002738

10.1017/S0022112087002738

Tipo

Article

PeerReviewed