936 resultados para Hexagonal perovskites
Resumo:
Phase diagrams for Nd2O3-H2O-CO2 and Gd2O3-H2O-CO2 systems at 1500 atm are given along with the results of selected runs in La, Sm and Eu systems. The stable phases in systems of La and Nd, are Ln(OH)CO3-B, Ln2O2CO3-II and LnOOH, in addition to the Ln(OH)3 phase at extremely low partial pressures of CO2 in the system. The systems become more and more complex with decreasing ionic radi and the number of stable carbonate phases increases. Ln2(CO3)3 · 3H2O orthorhombic (tengerate-like phase) is stable from Sm to Gd in addition to the other phases. The Gd(OH)CO3-A (ancylite-like phase) is hydrothermally stable at XCO2 greater-or-equal, slanted 0.5 while its hexagonal polymorph, Gd(OH)CO3-B is stable at low partial pressures of CO2 in the system.
Resumo:
Phase diagrams for the systems Ln2O3---H2O (Ln = La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Lu and Y) studied at 5000 to 10,000 psi and temperature range of 200–900°C, show that Ln(OH)3 hexagonal and LnOOH monoclinic are the only stable phases from Nd to Ho. The cubic oxide phase (C---Ln2O3) is stable for systems of Er, Tm, Yb and Lu, with no evidence of its equilibrium in the systems of lighter lanthanides. Using strong acids, HNO3 and HCOOH, as mineralisers the cubic oxides could be stabilised from Eu down to Lu. Solid solution phases of CeO2---Y2O3 and Eu2O3---Y2O3 have also been synthesised with HNO3 as mineraliser, since these compounds have promising use as solid electrolyte and phosphor materials respectively.
Resumo:
By modifying the electrodeposition technique, we have stabilized the silver nanowires (AgNWs) in high-energy hexagonal closed packed (hcp)structure. The conductivity noise measurements show that the noise magnitude in hcp silver nanowires is several orders of magnitude smaller than that of face centered cubic (fcc) silver nanowires, which is obtained by standard over potential lectrodeposition (OPD)technique. The reduction of noise can be attributed to the restricted dislocation dynamics in hcp AgNWs due to the presence of less number of slip systems. Temperature dependent noise measurements show that the noise magnitude in hcp AgNWs is weakly temperature dependent while in fcc AgNWs it is strong function of temperature.
Resumo:
From the proton nmr studies of 2-thiocoumarin and coumarin, it is concluded that the relative interproton distances in the two oxygen heteroatom bicyclic systems are similar. The values for the phenyl ring protons do not deviate significantly from the regular hexagonal geometry, unlike bicyclic systems with nitrogens as the heteroatoms, such as diazanaphthalenes. Larger values of the indirect spin-spin couplings within the protons of the ring containing the oxygen heteroatom, compared to the values between the ortho protons in the phenyl rings in coumarin and 2-thiocoumarin, correspond to the olefinic nature of these protons. This is in contrast to results for the nitrogen heterocycles where both the rings are aromatic.
Resumo:
Phase diagrams for ternary Ln2O3-H2O-CO2 systems for the entire lanthanide series (except promethium) were studied at temperatures in the range 100–950 °C and pressures up to 3000 bar. The phase diagrams obtained for the heavier lanthanides are far more complex, with the appearance of a number of stable carbonate phases. New carbonates isolated from lanthanide systems (Ln ≡ Tm, Yb, Lu) include Ln6(OH)4(CO3)7, Ln4(OH)6-(CO3)3, Ln2O(OH)2CO3, Ln6O2(OH)8(CO3)3 and Ln12O7(OH)10(CO3)6. Stable carbonate phases common to all the lighter lanthanides are hexagonal LnOHCO3 and hexagonal Ln2O2CO3. Ln2(CO3)3• 3H2O is stable from samarium onwards and orthorhombic LnOHCO3 is stable from gadolinium onwards. On the basis of the appearance of stable carbonates, four different groups of lanthanides were established: lanthanum to neodymium, promethium to europium, terbium to erbium and thulium to lutetium. Gadolinium is the connecting element between groups II and III. This is in accordance with the tetrad classification for f transition elements.
Resumo:
High resolution electron microscopic (HREM) investigation of potassiumbeta-alumina and the related gallate and ferrite has revealed that whereas the aluminate and gallate are highly disordered, consisting of random sequence ofbeta andbetaPrime units, the ferrite is more ordered. The aluminate and gallate are sensitive to electron beam irradiation exhibiting beam-induced damage similar to sodiumbetaPrime-alumina. Significantly, the ferrite is beamstable, the difference in behaviour amongst these related oxides arising from the different mechanisms by which alkali metal nonstoichiometry is accommodated. Barium hexaaluminate and hexaferrite are both highly ordered; specimens prepared by the barium borate flux method exhibit a new radic3a×radic3a superstructure of the hexagonal magnetoplumbite cell.
Resumo:
The phase behavior of the anionic surfactant sodium dodecyl sulfate (SDS) in the presence of the strongly binding counterion p-toluidine hydrochloride (PTHC) has been examined using small-angle X-ray diffraction and polarizing microscopy. A hexagonal-to-lamellar transition on varying the PTHC to SDS molar ratio (alpha) occurs through a nematic phase of rodlike micelles (N-C) -> isotropic (I) -> nematic of disklike micelles (N-D) at a fixed surfactant concentration (phi). The lamellar phase is found to coexist with an isotropic phase (l') over a large region of the phase diagram. Deuterium nuclear magnetic resonance investigations of the phase behavior at phi = 0.4 confirm the transition from N-C to N-D on varying alpha. The viscoelastic and flow behaviors of the different phases were examined. A decrease in the steady shear viscosity across the different phases with increasing alpha suggests a decrease in the aspect ratio of the micellar aggregates. From the transient shear stress response of the N-C and N-D nematic phases in step shear experiments, they were characterized to be tumbling and now aligning, respectively. Our studies reveal that by tuning the morphology of the surfactant micelles strongly binding counterions modify the phase behavior and rheological properties of concentrated surfactant solutions.
Resumo:
The degree of B/B alternate cation order is known to heavily influence the magnetic properties of A2BB O6 double perovskites although the nature of such disorder has never been critically studied. Our detailed x-ray absorption fine structure studies in conjunction with synchrotron radiation x-ray diffraction experiments on polycrystalline Sr2FeMoO6 samples with various degrees of disorder reveal that a very high degree of short range order is preserved even in samples with highly reduced long range chemical order. Based on these experimental results and with the help of detailed structural simulations, we are able to model the nature of the disorder in this important class of materials and discuss the consequent implications on its physical properties.
Resumo:
Alternating differential scanning calorimetric (ADSC) studies have been performed to understand the thermal behavior of bulk GexSe35-xTe65 glasses (17 <= x <= 25); it is found that the glasses with x <= 20 exhibit two crystallization exotherms (T-c1 & T-c2). On the other hand, those with x >= 20.5, show a single crystallization reaction upon heating. The exothermic reaction at T-c1 has been found to correspond to the partial crystallization of the glass into hexagonal Te and the reaction at T-c2 is associated with the additional crystallization of rhombohedral Ge-Te phase. The glass transition temperature of GexSe35-xTe65 glasses is found to show a linear but not-steep increase, indicating a progressive, but a gradual increase in network connectivity with Ge addition. It is also found that T-c1 of GexSe35-xTe65 glasses with x <= 20, increases progressively with Ge content and eventually merges with T-c2 at x approximate to 20.5 (< r > = 2.41); this behavior has been understood on the basis of the reduction in Te-Te bonds of lower energy and increase in Ge-Te bonds of higher energy, with increasing Ge content. Apart from the interesting composition dependent crystallization, an anomalous melting behavior is also exhibited by the GexSe35-xTe65 glasses.
Resumo:
Ternary vanadium sulfides, MxVS2 (M = Fe, Co, Ni), with Image , were prepared and studied. The Image and Image series are isostructural with V5S8 and V3S4, respectively, while compounds with Image appear to have the hexagonal Cr2S3 structure. Structures of NiV2S4 and NiV4S8 were refined from powder X-ray diffraction intensities. Magnetic and electrical properties reveal that M ions in these sulfides exist in the divalent state having localized moments, while the vanadium 3 d electrons are itinerant.
Resumo:
The effect of pressure on the electrical resistivity of bulk Si20Te80 glass has been studied up to a pressure of 8 GPa. A discontinuous transition occurs at a pressure of 7 GPa. The X-ray diffraction studies on the pressure quenched sample show that the high pressure phase is crystalline with hexagonal structure (c/a = 1.5). On heating, the high pressure hexagonal phase has on exothermic decomposition atT = 586 K into two crystalline phases, which are the stable phases tellurium and SiTe2 obtained by simple heating of the glass.
Resumo:
The i.r. spectra of some Ln2BO4 and LnSrBO4 compounds (Ln = La, Pr, Nd, Sm or Gd;B = Fe, Al, Co or Cu) with K2NiF4 or related structures have been studied in the range 800-300 cm−1. The BO6 octahedra in compounds with K2NiF4 structure are elongated. The assignment of the bands in terms of internal modes of sheets of bridged BO6 octahedra or square-planar BO4 sheets has been considered. The observed spectra are correlated with those of solid solutions of these oxides and of LnBO3 perovskites. Unusually high stretching frequencies found in some of the oxides are discussed in terms of the short B---O bonds in the basal plane and the Ln---O bonds along the c axis.
Resumo:
The i.r. spectra of some Ln2BO4 and LnSrBO4 compounds (Ln = La, Pr, Nd, Sm or Gd;B = Fe, Al, Co or Cu) with K2NiF4 or related structures have been studied in the range 800-300 cm−1. The BO6 octahedra in compounds with K2NiF4 structure are elongated. The assignment of the bands in terms of internal modes of sheets of bridged BO6 octahedra or square-planar BO4 sheets has been considered. The observed spectra are correlated with those of solid solutions of these oxides and of LnBO3 perovskites. Unusually high stretching frequencies found in some of the oxides are discussed in terms of the short B---O bonds in the basal plane and the Ln---O bonds along the c axis.
Resumo:
Phase diagrams for Tm2O3-H2O-CO2. Yb2O3-H2O-CO2 and Lu2O3-H2O-CO2 systems at 650 and 1300 bars have been investigated in the temperature range of 100–800°C. The phase diagrams are far more complex than those for the lighter lanthanides. The stable phases are Ln(OH)3, Ln2(CO3)3.3H2O (tengerite phase), orthorhombic-LnOHCO3, hexagonal-Ln2O2CO3. LnOOH and cubic-Ln2O3. Ln(OH)3 is stable only at very low partial pressures of CO2. Additional phases stabilised are Ln2O(OH)2CO3and Ln6(OH)4(CO3)7 which are absent in lighter lanthanide systems. Other phases, isolated in the presence of minor alkali impurities, are Ln6O2(OH)8(CO3)3. Ln4(OH)6(CO3)3 and Ln12O7(OH)10,(CO3)6. The chemical equilibria prevailing in these hydrothermal systems may be best explained on the basis of the four-fold classification of lanthanides.
Resumo:
A simple semiempirical quantum chemical approach (Extended Huckel Theory) is shown to give a reasonable description of the electronic structural aspects of chemisorption on the mercury model surface. Chemisorptive interaction of alkali metal atoms and cations, halogen atoms and anions, and water molecules with a charge-neutralized hexagonal close-packed cluster of seven Hg atoms is studied. Adsorption of H, C, N and O atoms on the same model cluster is studied for comparison with earlier work. Chemisorption energies, charge transfer, interaction distance and hydration effects are discussed and compared with experimental results where available.