953 resultados para Generalized Resolvent Operator
Resumo:
A large class of special functions are solutions of systems of linear difference and differential equations with polynomial coefficients. For a given function, these equations considered as operator polynomials generate a left ideal in a noncommutative algebra called Ore algebra. This ideal with finitely many conditions characterizes the function uniquely so that Gröbner basis techniques can be applied. Many problems related to special functions which can be described by such ideals can be solved by performing elimination of appropriate noncommutative variables in these ideals. In this work, we mainly achieve the following: 1. We give an overview of the theoretical algebraic background as well as the algorithmic aspects of different methods using noncommutative Gröbner elimination techniques in Ore algebras in order to solve problems related to special functions. 2. We describe in detail algorithms which are based on Gröbner elimination techniques and perform the creative telescoping method for sums and integrals of special functions. 3. We investigate and compare these algorithms by illustrative examples which are performed by the computer algebra system Maple. This investigation has the objective to test how far noncommutative Gröbner elimination techniques may be efficiently applied to perform creative telescoping.
Resumo:
In the theory of the Navier-Stokes equations, the proofs of some basic known results, like for example the uniqueness of solutions to the stationary Navier-Stokes equations under smallness assumptions on the data or the stability of certain time discretization schemes, actually only use a small range of properties and are therefore valid in a more general context. This observation leads us to introduce the concept of SST spaces, a generalization of the functional setting for the Navier-Stokes equations. It allows us to prove (by means of counterexamples) that several uniqueness and stability conjectures that are still open in the case of the Navier-Stokes equations have a negative answer in the larger class of SST spaces, thereby showing that proof strategies used for a number of classical results are not sufficient to affirmatively answer these open questions. More precisely, in the larger class of SST spaces, non-uniqueness phenomena can be observed for the implicit Euler scheme, for two nonlinear versions of the Crank-Nicolson scheme, for the fractional step theta scheme, and for the SST-generalized stationary Navier-Stokes equations. As far as stability is concerned, a linear version of the Euler scheme, a nonlinear version of the Crank-Nicolson scheme, and the fractional step theta scheme turn out to be non-stable in the class of SST spaces. The positive results established in this thesis include the generalization of classical uniqueness and stability results to SST spaces, the uniqueness of solutions (under smallness assumptions) to two nonlinear versions of the Euler scheme, two nonlinear versions of the Crank-Nicolson scheme, and the fractional step theta scheme for general SST spaces, the second order convergence of a version of the Crank-Nicolson scheme, and a new proof of the first order convergence of the implicit Euler scheme for the Navier-Stokes equations. For each convergence result, we provide conditions on the data that guarantee the existence of nonstationary solutions satisfying the regularity assumptions needed for the corresponding convergence theorem. In the case of the Crank-Nicolson scheme, this involves a compatibility condition at the corner of the space-time cylinder, which can be satisfied via a suitable prescription of the initial acceleration.
Resumo:
Thema der vorliegenden Arbeit ist die Bestimmung von Basen von Räumen spezieller harmonischer 2-Koketten auf Bruhat-Tits-Gebäuden der PGL(3) über Funktionenkörpern. Hierzu wird der Raum der speziellen harmonischen 2-Koketten auf dem Bruhat-Tits-Gebäude der PGL(3) zunächst mit gewissen komplexen Linearkombinationen von 2-Simplizes des Quotientenkomplexes, sogenannten geschlossenen Flächen, identifiziert und anschließend durch verallgemeinerte Modulsymbole beschrieben. Die Darstellung der Gruppe der Modulsymbole durch Erzeuger und Relationen ermöglicht die Bestimmung einer endlichen Basis des Raums der speziellen harmonischen 2-Koketten. Die so gewonnenen Erkenntnisse können zur Untersuchung von Hecke-Operatoren auf speziellen harmonischen 2-Koketten genutzt werden. Mithilfe des hergeleiteten Isomorphismus zwischen dem Raum der speziellen harmonischen 2-Koketten und dem Raum der geschlossenen Flächen wird die Theorie der Hecke-Operatoren auf den Raum der geschlossenen Flächen übertragen. Dies ermöglicht die Berechnung von Abbildungsmatrizen der Hecke-Operatoren auf dem Raum der harmonischen 2-Koketten durch die Auswertung auf den geschlossenen Flächen.
Resumo:
This report addresses the problem of acquiring objects using articulated robotic hands. Standard grasps are used to make the problem tractable, and a technique is developed for generalizing these standard grasps to increase their flexibility to variations in the problem geometry. A generalized grasp description is applied to a new problem situation using a parallel search through hand configuration space, and the result of this operation is a global overview of the space of good solutions. The techniques presented in this report have been implemented, and the results are verified using the Salisbury three-finger robotic hand.
Resumo:
Resumen tomado de la publicaci??n
Resumo:
Resumen tomado de la publicaci??n
Resumo:
We present algorithms for computing approximate distance functions and shortest paths from a generalized source (point, segment, polygonal chain or polygonal region) on a weighted non-convex polyhedral surface in which obstacles (represented by polygonal chains or polygons) are allowed. We also describe an algorithm for discretizing, by using graphics hardware capabilities, distance functions. Finally, we present algorithms for computing discrete k-order Voronoi diagrams
Resumo:
We present an algorithm for computing exact shortest paths, and consequently distances, from a generalized source (point, segment, polygonal chain or polygonal region) on a possibly non-convex polyhedral surface in which polygonal chain or polygon obstacles are allowed. We also present algorithms for computing discrete Voronoi diagrams of a set of generalized sites (points, segments, polygonal chains or polygons) on a polyhedral surface with obstacles. To obtain the discrete Voronoi diagrams our algorithms, exploiting hardware graphics capabilities, compute shortest path distances defined by the sites
Resumo:
The author studies random walk estimators for radiosity with generalized absorption probabilities. That is, a path will either die or survive on a patch according to an arbitrary probability. The estimators studied so far, the infinite path length estimator and finite path length one, can be considered as particular cases. Practical applications of the random walks with generalized probabilities are given. A necessary and sufficient condition for the existence of the variance is given, together with heuristics to be used in practical cases. The optimal probabilities are also found for the case when one is interested in the whole scene, and are equal to the reflectivities
Resumo:
Es defineix l'expansió general d'operadors com una combinació lineal de projectors i s'exposa la seva aplicació generalitzada al càlcul d'integrals moleculars. Com a exemple numèric, es fa l'aplicació al càlcul d'integrals de repulsió electrònica entre quatre funcions de tipus s centrades en punts diferents, i es mostren tant resultats del càlcul com la definició d'escalat respecte a un valor de referència, que facilitarà el procés d'optimització de l'expansió per uns paràmetres arbitraris. Es donen resultats ajustats al valor exacte