Generalized Higher-Order Voronoi Diagrams on Polyhedral Surfaces


Autoria(s): Fort, Marta; Sellarès i Chiva, Joan Antoni
Data(s)

2007

Resumo

We present an algorithm for computing exact shortest paths, and consequently distances, from a generalized source (point, segment, polygonal chain or polygonal region) on a possibly non-convex polyhedral surface in which polygonal chain or polygon obstacles are allowed. We also present algorithms for computing discrete Voronoi diagrams of a set of generalized sites (points, segments, polygonal chains or polygons) on a polyhedral surface with obstacles. To obtain the discrete Voronoi diagrams our algorithms, exploiting hardware graphics capabilities, compute shortest path distances defined by the sites

Formato

application/pdf

Identificador

Fort, M., i Sellares, J.A. (2007). Generalized Higher-Order Voronoi Diagrams on Polyhedral Surfaces. 4th International Symposium on Voronoi Diagrams in Science and Engineering : 2007 : ISVD '07, 74 - 83. Recuperat 29 setembre 2010, a http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4276107

0-7695-2869-4

http://hdl.handle.net/10256/3061

http://dx.doi.org/10.1109/ISVD.2007.24

Idioma(s)

eng

Publicador

IEEE

Relação

Reproducció digital del document publicat a: http://dx.doi.org/10.1109/ISVD.2007.24

© 4th International Symposium on Voronoi Diagrams in Science and Engineering : 2007 : ISVD '07, 2007, p. 74-83

Articles publicats (D-IMA)

Direitos

Tots els drets reservats

Palavras-Chave #Algorismes computacionals #Grafs, Teoria de #Geometria computacional #Poliedres #Voronoi, Polígons de #Computer algorithms #Computational geometry #Graph theory #Polyhedra #Voronoi diagrams
Tipo

info:eu-repo/semantics/article