459 resultados para Exo-biopolymer
Resumo:
Among the polymers that stand out most in recent decades, chitosan, a biopolymer with physico-chemical and biological promising properties has been the subject of a broad field of research. Chitosan comes as a great choice in the field of adsorption, due to their adsorbents properties, low cost and abundance. The presence of amino groups in its chain govern the majority of their properties and define which application a sample of chitosan may be used, so it is essential to determine their average degree of deacetylation. In this work we developed kinetic and equilibrium studies to monitor and characterize the adsorption process of two drugs, tetracycline hydrochloride and sodium cromoglycate, in chitosan particles. Kinetic models and the adsorption isotherms were applied to the experimental data. For both studies, the zeta potential analyzes were also performed. The adsorption of each drug showed distinct aspects. Through the studies developed in this work was possible to describe a kinetic model for the adsorption of tetracycline on chitosan particles, thus demonstrating that it can be described by two kinetics of adsorption, one for protonated tetracycline and another one for unprotonated tetracycline. In the adsorption of sodium cromoglycate on chitosan particles, equilibrium studies were developed at different temperatures, allowing the determination of thermodynamic parameters
Resumo:
Chitosan is a biopolymer derived from the shells of crustaceans, biodegradable, inexpensive and renewable with important physical and chemical properties. Moreover, the different modifications possible in its chemical structure generate new properties, making it an attractive polysaccharide owing to its range of potential applications. Polymers have been used in oil production operations. However, growing concern over environmental constraints has prompted oil industry to search for environmentally sustainable materials. As such, this study sought to obtain chitosan derivatives grafted with hydrophilic (poly(ethylene glycol), mPEG) and/or hydrophobic groups (n-dodecyl) via a simple (one-pot) method and evaluate their physicochemical properties as a function of varying pH using rheology, small-angle Xray scattering (SAXS), dynamic light scattering (DLS) and zeta potential. The chitosan derivatives were prepared using reductive alkylation under mild reaction conditions and the chemical structure of the polymers was characterized by nuclear magnetic resonance (1H NMR) and CHN elemental analysis. Considering a constant mPEG/Chitosan molar ratio on modification of chitosan, the solubility of the polymer across a wide pH range (acidic, neutral and basic) could only be improved when some of the amino groups were submitted to reacetylation using the one-pot method. Under these conditions, solubility is maintained even with the simultaneous insertion of n-dodecyl. On the other hand, the solubility of derivatives obtained only through mPEG incorporation using the traditional methodology, or with the ndodecyl group, was similar to that of its precursor. The hydrophilic group promoted decreased viscosity of the polymer solutions at 10 g/L in acid medium. However, at basic pH, both viscosity and thermal stability increased, as well as exhibited a pronounced pseudoplastic behavior, suggesting strong intermolecular associations in the alkaline medium. The SAXS results showed a polyelectrolyte behavior with the decrease in pH for the polymer systems. DLS analyses revealed that although the dilute polymer solutions at 1 g/L and pH 3 exhibited a high density of protonated amino groups along the polymer chain, the high degree of charge contributed significantly to aggregation, promoting increased particle size with the decrease in pH. Furthermore, the hydrophobic group also contributed to increasing the size of aggregates in solution at pH 3, whereas the hydrophilic group helped reduce their size across the entire pH range. Nevertheless, the nature of aggregation was dependent on the pH of the medium. Zeta potential results indicated that its values do not depend solely on the surface charge of the particle, but are also dependent on the net charge of the medium. In this study, water soluble associative polymers exhibit properties that can be of great interest in the petroleum industry
Resumo:
Este estudo parte do princípio de que o conhecimento da Educação Física é, eminentemente, vivencial e reconhece que a tecnologia da informação, especifi camente a comunicação de massa, é capaz de transmitir informação para um grande público, modifi cando a vivência das práticas corporais tematizadas pela Educação Física. Nesse sentido, esta pesquisa objetiva analisar como o aparato tecnológico, em especial a televisão, interfere na apropriação do conhecimento na Educação Física, com base na refl exão sobre o esporte. Assim, utilizamos o olhar estético sobre o telespetáculo esportivo e a análise de conteúdo para trabalhar com discursos de profi ssionais. Além disso, apontamos para a revisão de alguns conceitos pertinentes à área, tais como corpo, sensibilidade e conhecimento
Resumo:
Chitosan, a biopolymer obtained from chitin, and its derivates, such as chitosan hydrochloride, has been reported as wound healing accelerators and as possible bone substitutes for tissue engineering, and therefore these Substances could be relevant in dentistry and periodontology. The purpose of this investigation was to make a histological evaluation of chitosan and chitosan hydrochloride biomaterials (gels) used in the correction of critical size bone defects made in rat's calvaria. Bone defects of 8 mm in diameter were surgically created in the calviria of 50 Holtzman (Rattus norvegicus) rats and filled with blood clot (control), low molecular weight chitosan, high molecular weight chitosan, low molecular weight chitosan hydrochloride, and high molecular weight chitosan hydrochloride, numbering 10 animals, divided into two experimental periods (15 and 60 days), for each biomaterial. The histological evaluation was made based on the morphology of the new-formed tissues in defect's region, and the results indicated that there was no statistical difference between the groups when the new bone formation in the entire defect's area were compared (p > 0.05) and, except in the control groups, assorted degrees of inflammation Could be Seen. In Conclusion, chitosan and chitosan hydrochloride biomaterials used in this study were not able to promote new bone formation in critical size defects made in rat's calvaria. (C) 2009 Wiley Periodicals, Inc. J Biomed Mater Res 93A: 107-114, 2016
Resumo:
Natural polymers, such as chitosan, obtained from chitin, are been widely studied for use in the tissue regeneration field. This study established a protocol to attain membranes made from this biopolymer, consisting of high or low molecular weight chitosan. The biocompatibility of these membranes was histologically evaluated, comparing them to collagen membrane surgically implanted in rat subcutaneous tissue. Fifteen Holtzmann rats were divided in three experimental groups: High and Low Molecular Weight Chitosan membranes (HMWC and LMWC) and Collagen membranes (C-control group); each of them with three experimental periods: 7, 15 and 30 days. As a result, after the seven days evaluation, the membranes were present and associated with a variable degree of inflammation, and after the 15 and 30 days evaluations, the membranes were absent in all groups. It is concluded that the chitosan-based membranes were successfully attained and presented comparable resorption times to collagen membranes.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A bacterium isolated from soil contaminated by hydrocarbon was studied and, by biochemical tests and analysis of PCR, the presence of Bacillus pumilus was identified. The production of biosurfactant was optimized, test of oil degradation and antimicrobial activity determination. The results showed that pH 5.0 and 7.0, 72 h of fermentation, sucrose and sugar cane juice (2%) had best yields. The bacterium is able to degrade crude oil and displays bacteriostatic and fungistatic activity. From the analysis of proximate composition of biosurfactant found the presence of biopolymer formed by a lipopolysaccharide-protein complex.
Resumo:
Alginate is a biopolymer used for a variety of industrial applications, for example, in the textiles, cosmetics, foods, agricultural and biotechnological industries. This biopolymer is traditionally extracted from some brown seaweeds (Phaeophyceae) and can be produced by bacteria isolated from soil, as Azotobacter vinelandii, like capsular polysaccharide using glucose, sucrose, among others as carbon sources. The main difference between the alginate of seaweed and the bacterial ones, is the biggest degree of acetylation of this last one, with great influence in the gel force. These chemical characteristics and production of bacterial alginate are presented in this work.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Structural and optical characteristics of zein-based films produced with different xanthan gum concentrations have been studied in this work. Scanning electronic microscopy (SEM) and optical microscopy (OM) were performed to identify if the incorporation of the material into the matrix film, formed a homogeneous structure, as well as to characterize its constituents as the colour and shape. SEM showed a homogeneous matrix for the control (0% xanthan) with good lipid distribution. However, when the samples were investigated by OM, lipids globules in the control biofilm appeared larger and more dispersed in the matrix than the others samples. Transparency/opacity test measurements by UV-VIS analysis indicated that the addition of xanthan to the film matrix lowered significantly its transparency properties Overall, the addition of xanthan gum favoured lipid dispersion in the matrix, making biomaterials more homogeneous, although with less transparency.
Resumo:
The X-ray crystal structure of a complex between ribonuclease T-1 and guanylyl(3'-6')-6'-deoxyhomouridine (GpcU) has been determined at 2.0 Angstrom resolution. This Ligand is an isosteric analogue of the minimal RNA substrate, guanylyl(3'-5')uridine (GpU), where a methylene is substituted for the uridine 5'-oxygen atom. Two protein molecules are part of the asymmetric unit and both have a GpcU bound at the active site in the same manner. The protein-protein interface reveals an extended aromatic stack involving both guanines and three enzyme phenolic groups. A third GpcU has its guanine moiety stacked on His92 at the active site on enzyme molecule A and interacts with GpcU on molecule B in a neighboring unit via hydrogen bonding between uridine ribose 2'- and 3'-OH groups. None of the uridine moieties of the three GpcU molecules in the asymmetric unit interacts directly with the protein. GpcU-active-site interactions involve extensive hydrogen bonding of the guanine moiety at the primary recognition site and of the guanosine 2'-hydroxyl group with His40 and Glu58. on the other hand, the phosphonate group is weakly bound only by a single hydrogen bond with Tyr38, unlike ligand phosphate groups of other substrate analogues and 3'-GMP, which hydrogen-bonded with three additional active-site residues. Hydrogen bonding of the guanylyl 2'-OH group and the phosphonate moiety is essentially the same as that recently observed for a novel structure of a RNase T-1-3'-GMP complex obtained immediately after in situ hydrolysis of exo-(S-p)-guanosine 2',3'-cyclophosphorothioate [Zegers et al. (1998) Nature Struct. Biol. 5, 280-283]. It is likely that GpcU at the active site represents a nonproductive binding mode for GpU [:Steyaert, J., and Engleborghs (1995) fur. J. Biochem. 233, 140-144]. The results suggest that the active site of ribonuclease T-1 is adapted for optimal tight binding of both the guanylyl 2'-OH and phosphate groups (of GpU) only in the transition state for catalytic transesterification, which is stabilized by adjacent binding of the leaving nucleoside (U) group.
Resumo:
Endo-polygalacturonase (endo-PG), exo-polygalacturonase (exo-PG) and pectin liase (PL) were produced by solid-state fermentation of a mixture of orange bagasse and wheat bran (1:1) with the filamentous fungus Penicillium viridicatum RFC3. This substrate was prepared with two moisture contents, 70% and 80%, and each was fermented in two types of container, Erlenmeyer flask and polypropylene pack. When Erlenmeyer flasks were used, the medium containing 80% of initial moisture afforded higher PL production while neither exo- nor endo-PG production was influenced by substrate moisture. The highest enzyme activities obtained were 0.70 U mL(-1) for endo-PG, 8.90 U mL(-1) for exo-PG, and 41.30 U mL(-1) for PL. However, when the fermentation was done in polypropylene packs, higher production of all three enzymes was obtained at 70% moisture (0.7 and 8.33 U mL(-1) for endo- and exo-PG and 100 U mL(-1) for PL). An increase in the pH and decrease in the reducing sugar content of the medium was observed. The fungus was able to produce pectin esterase and other depolymerizing enzymes such as xylanase, CMCase, protease and amylase. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)